These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36607897)

  • 1. RCFGL: Rapid Condition adaptive Fused Graphical Lasso and application to modeling brain region co-expression networks.
    Seal S; Li Q; Basner EB; Saba LM; Kechris K
    PLoS Comput Biol; 2023 Jan; 19(1):e1010758. PubMed ID: 36607897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks.
    Wu N; Huang J; Zhang XF; Ou-Yang L; He S; Zhu Z; Xie W
    Front Genet; 2019; 10():623. PubMed ID: 31396259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regularized estimation of large-scale gene association networks using graphical Gaussian models.
    Krämer N; Schäfer J; Boulesteix AL
    BMC Bioinformatics; 2009 Nov; 10():384. PubMed ID: 19930695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailored graphical lasso for data integration in gene network reconstruction.
    Lingjærde C; Lien TG; Borgan Ø; Bergholtz H; Glad IK
    BMC Bioinformatics; 2021 Oct; 22(1):498. PubMed ID: 34654363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.
    Shimamura T; Imoto S; Yamaguchi R; Miyano S
    Genome Inform; 2007; 19():142-53. PubMed ID: 18546512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential co-expression analysis reveals early stage transcriptomic decoupling in alzheimer's disease.
    Upadhyaya Y; Xie L; Salama P; Cao S; Nho K; Saykin AJ; Yan J; Alzheimer's Disease Neuroimaging Initiative FT
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):53. PubMed ID: 32241275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.
    Wang T; Ren Z; Ding Y; Fang Z; Sun Z; MacDonald ML; Sweet RA; Wang J; Chen W
    PLoS Comput Biol; 2016 Feb; 12(2):e1004755. PubMed ID: 26872036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring gene expression networks with hubs using a degree weighted Lasso approach.
    Sulaimanov N; Kumar S; Burdet F; Ibberson M; Pagni M; Koeppl H
    Bioinformatics; 2019 Mar; 35(6):987-994. PubMed ID: 30165436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm.
    Oh JH; Deasy JO
    BMC Bioinformatics; 2014; 15 Suppl 7(Suppl 7):S5. PubMed ID: 25077716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The joint graphical lasso for inverse covariance estimation across multiple classes.
    Danaher P; Wang P; Witten DM
    J R Stat Soc Series B Stat Methodol; 2014 Mar; 76(2):373-397. PubMed ID: 24817823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations.
    Cai X; Bazerque JA; Giannakis GB
    PLoS Comput Biol; 2013; 9(5):e1003068. PubMed ID: 23717196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ℓ 1-Penalized censored Gaussian graphical model.
    Augugliaro L; Abbruzzo A; Vinciotti V
    Biostatistics; 2020 Apr; 21(2):e1-e16. PubMed ID: 30203001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended graphical lasso for multiple interaction networks for high dimensional omics data.
    Xu Y; Jiang H; Jiang W
    PLoS Comput Biol; 2021 Oct; 17(10):e1008794. PubMed ID: 34669695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of fused graphical lasso to statistical inference for multiple sparse precision matrices.
    Zhang Q; Li L; Yang H
    PLoS One; 2024; 19(5):e0304264. PubMed ID: 38820407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data.
    Bhadra S; Bhattacharyya C; Chandra NR; Mian IS
    Algorithms Mol Biol; 2009 Feb; 4():5. PubMed ID: 19239685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Network Analysis via Weighted Fused Conditional Gaussian Graphical Model.
    Ou-Yang L; Zhang XF; Hu X; Yan H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2162-2169. PubMed ID: 31247559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Directed Acyclic Graphs Through Two-stage Adaptive Lasso for Gene Network Inference.
    Han SW; Chen G; Cheon MS; Zhong H
    J Am Stat Assoc; 2016; 111(515):1004-1019. PubMed ID: 28239216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.