These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36608003)

  • 1. Early experience with low-pass filtered images facilitates visual category learning in a neural network model.
    Jinsi O; Henderson MM; Tarr MJ
    PLoS One; 2023; 18(1):e0280145. PubMed ID: 36608003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision.
    Avberšek LK; Zeman A; Op de Beeck H
    J Vis; 2021 Sep; 21(10):14. PubMed ID: 34533580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing.
    Jang H; Tong F
    J Vis; 2021 Nov; 21(12):6. PubMed ID: 34767621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergent color categorization in a neural network trained for object recognition.
    de Vries JP; Akbarinia A; Flachot A; Gegenfurtner KR
    Elife; 2022 Dec; 11():. PubMed ID: 36511778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ecologically motivated image dataset for deep learning yields better models of human vision.
    Mehrer J; Spoerer CJ; Jones EC; Kriegeskorte N; Kietzmann TC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does training with blurred images bring convolutional neural networks closer to humans with respect to robust object recognition and internal representations?
    Yoshihara S; Fukiage T; Nishida S
    Front Psychol; 2023; 14():1047694. PubMed ID: 36874839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks.
    Jang H; Tong F
    Nat Commun; 2024 Mar; 15(1):1989. PubMed ID: 38443349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural markers of subordinate-level categorization in 6- to 7-month-old infants.
    Quinn PC; Doran MM; Reiss JE; Hoffman JE
    Dev Sci; 2010 May; 13(3):499-507. PubMed ID: 20443970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural and behavioral effects of subordinate-level training of novel objects across manipulations of color and spatial frequency.
    Jones T; Hadley H; Cataldo AM; Arnold E; Curran T; Tanaka JW; Scott LS
    Eur J Neurosci; 2020 Dec; 52(11):4468-4479. PubMed ID: 29499088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human peripheral blur is optimal for object recognition.
    Pramod RT; Katti H; Arun SP
    Vision Res; 2022 Nov; 200():108083. PubMed ID: 35830763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Color and spatial frequency differentially impact early stages of perceptual expertise training.
    Devillez H; Mollison MV; Hagen S; Tanaka JW; Scott LS; Curran T
    Neuropsychologia; 2019 Jan; 122():62-75. PubMed ID: 30471254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subordinate-level categorization relies on high spatial frequencies to a greater degree than basic-level categorization.
    Collin CA; McMullen PA
    Percept Psychophys; 2005 Feb; 67(2):354-64. PubMed ID: 15971697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of superordinate labels yields more robust and human-like visual representations in convolutional neural networks.
    Ahn S; Zelinsky GJ; Lupyan G
    J Vis; 2021 Dec; 21(13):13. PubMed ID: 34967860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks.
    Jang H; Tong F
    bioRxiv; 2023 Jul; ():. PubMed ID: 37577646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early development of perceptual expertise: within-basic-level categorization experience facilitates the formation of subordinate-level category representations in 6- to 7-month-old infants.
    Quinn PC; Tanaka JW
    Mem Cognit; 2007 Sep; 35(6):1422-31. PubMed ID: 18035638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seeking an optimal approach for Computer-aided Diagnosis of Pulmonary Embolism.
    Islam NU; Zhou Z; Gehlot S; Gotway MB; Liang J
    Med Image Anal; 2024 Jan; 91():102988. PubMed ID: 37924750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning method for classifying mammographic breast density categories.
    Mohamed AA; Berg WA; Peng H; Luo Y; Jankowitz RC; Wu S
    Med Phys; 2018 Jan; 45(1):314-321. PubMed ID: 29159811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of face perception modeled with a convolutional recurrent neural network.
    O'Reilly JA; Wehrman J; Carey A; Bedwin J; Hourn T; Asadi F; Sowman PF
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36898147
    [No Abstract]   [Full Text] [Related]  

  • 20. Low-dose CT denoising via convolutional neural network with an observer loss function.
    Han M; Shim H; Baek J
    Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.