These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 36608336)
1. Constructing high-strength nano-micro fibrous woven scaffolds with native-like anisotropic structure and immunoregulatory function for tendon repair and regeneration. Cai J; Liu J; Xu J; Li Y; Zheng T; Zhang T; Han K; Chen S; Jiang J; Wu S; Zhao J Biofabrication; 2023 Jan; 15(2):. PubMed ID: 36608336 [TBL] [Abstract][Full Text] [Related]
2. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Wu S; Wang Y; Streubel PN; Duan B Acta Biomater; 2017 Oct; 62():102-115. PubMed ID: 28864251 [TBL] [Abstract][Full Text] [Related]
3. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles. Wu S; Liu J; Cai J; Zhao J; Duan B; Chen S Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34450602 [TBL] [Abstract][Full Text] [Related]
4. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering. Cai J; Xie X; Li D; Wang L; Jiang J; Mo X; Zhao J Biomater Sci; 2020 Aug; 8(16):4413-4425. PubMed ID: 32648862 [TBL] [Abstract][Full Text] [Related]
5. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497 [TBL] [Abstract][Full Text] [Related]
6. Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds. Liu J; Li T; Zhang H; Zhao W; Qu L; Chen S; Wu S Mater Today Bio; 2022 Mar; 14():100243. PubMed ID: 35372816 [TBL] [Abstract][Full Text] [Related]
7. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Shao W; He J; Han Q; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():599-610. PubMed ID: 27287159 [TBL] [Abstract][Full Text] [Related]
8. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Wang L; Wu Y; Hu T; Ma PX; Guo B Acta Biomater; 2019 Sep; 96():175-187. PubMed ID: 31260823 [TBL] [Abstract][Full Text] [Related]
11. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
12. Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L‑lactic acid) fibrous meshes. Wu S; Peng H; Li X; Streubel PN; Liu Y; Duan B Biofabrication; 2017 Nov; 9(4):044106. PubMed ID: 29134948 [TBL] [Abstract][Full Text] [Related]
13. A collagen/PLA hybrid scaffold supports tendon-derived cell growth for tendon repair and regeneration. Xie Y; Zhang F; Akkus O; King MW J Biomed Mater Res B Appl Biomater; 2022 Dec; 110(12):2624-2635. PubMed ID: 35779243 [TBL] [Abstract][Full Text] [Related]
14. Nano/micro hybrid scaffold of PCL or P3HB nanofibers combined with silk fibroin for tendon and ligament tissue engineering. Naghashzargar E; Farè S; Catto V; Bertoldi S; Semnani D; Karbasi S; Tanzi MC J Appl Biomater Funct Mater; 2015 Jul; 13(2):e156-68. PubMed ID: 25589157 [TBL] [Abstract][Full Text] [Related]
15. Design and construction of poly (L-lactic-acid) nanofibrous yarns and threads with controllable structure and performances. Wu S; Li Y; Chen S; Zhai H; Ling P J Mech Behav Biomed Mater; 2023 Dec; 148():106214. PubMed ID: 37918339 [TBL] [Abstract][Full Text] [Related]
16. Tendon-bioinspired wavy nanofibrous scaffolds provide tunable anisotropy and promote tenogenesis for tendon tissue engineering. Wu S; Liu J; Qi Y; Cai J; Zhao J; Duan B; Chen S Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112181. PubMed ID: 34082981 [TBL] [Abstract][Full Text] [Related]
17. Tissue-engineered PLLA/gelatine nanofibrous scaffold promoting the phenotypic expression of epithelial and smooth muscle cells for urethral reconstruction. Liu G; Fu M; Li F; Fu W; Zhao Z; Xia H; Niu Y Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110810. PubMed ID: 32279818 [TBL] [Abstract][Full Text] [Related]
18. Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns. Maleki H; Gharehaghaji AA; Moroni L; Dijkstra PJ Biofabrication; 2013 Sep; 5(3):035014. PubMed ID: 23945472 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical porous silk fibroin/poly(L-lactic acid) fibrous membranes towards vascular scaffolds. Song J; Chen Z; Murillo LL; Tang D; Meng C; Zhong X; Wang T; Li J Int J Biol Macromol; 2021 Jan; 166():1111-1120. PubMed ID: 33159945 [TBL] [Abstract][Full Text] [Related]
20. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Wu S; Dong T; Li Y; Sun M; Qi Y; Liu J; Kuss MA; Chen S; Duan B Appl Mater Today; 2022 Jun; 27():101473. PubMed ID: 35434263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]