These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36608350)

  • 1. Extraction of cardiac-related signals from a suprasternal pressure sensor during sleep.
    Cerina L; Papini GB; Fonseca P; Overeem S; van Dijk JP; Vullings R
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36608350
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantitative validation of the suprasternal pressure signal to assess respiratory effort during sleep.
    Cerina L; Papini GB; Fonseca P; Overeem S; van Dijk JP; van Meulen F; Vullings R
    Physiol Meas; 2024 May; 45(5):. PubMed ID: 38749433
    [No Abstract]   [Full Text] [Related]  

  • 3. A sleep stage estimation algorithm based on cardiorespiratory signals derived from a suprasternal pressure sensor.
    Cerina L; Overeem S; Papini GB; van Dijk JP; Vullings R; van Meulen F; Ross M; Cerny A; Anderer P; Fonseca P
    J Sleep Res; 2024 Apr; 33(2):e14015. PubMed ID: 37572052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine.
    Berry RB; Budhiraja R; Gottlieb DJ; Gozal D; Iber C; Kapur VK; Marcus CL; Mehra R; Parthasarathy S; Quan SF; Redline S; Strohl KP; Davidson Ward SL; Tangredi MM;
    J Clin Sleep Med; 2012 Oct; 8(5):597-619. PubMed ID: 23066376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Apnea Detection Using Oronasal Thermal Airflow Sensor, Nasal Pressure Transducer, Respiratory Inductance Plethysmography and Tracheal Sound Sensor.
    Sabil A; Glos M; Günther A; Schöbel C; Veauthier C; Fietze I; Penzel T
    J Clin Sleep Med; 2019 Feb; 15(2):285-292. PubMed ID: 30736876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Respiratory Events in Obstructive Sleep Apnea Using Suprasternal Pressure Monitoring.
    Glos M; Sabil A; Jelavic KS; Schöbel C; Fietze I; Penzel T
    J Clin Sleep Med; 2018 Mar; 14(3):359-369. PubMed ID: 29458696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accelerometer-based device for sleep apnea screening.
    Morillo D; Rojas Ojeda JL; Crespo Foix LF; Jiménez A
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):491-9. PubMed ID: 19643712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracheal Sound Analysis.
    Sabil A; Launois S
    Adv Exp Med Biol; 2022; 1384():265-280. PubMed ID: 36217090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a Suprasternal Pressure Sensor for Sleep Apnea Classification in Children.
    Amaddeo A; Fernandez-Bolanos M; Olmo Arroyo J; Khirani S; Baffet G; Fauroux B
    J Clin Sleep Med; 2016 Dec; 12(12):1641-1647. PubMed ID: 27655466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Envelope analysis of the airflow signal to improve polysomnographic assessment of sleep disordered breathing.
    Díaz JA; Arancibia JM; Bassi A; Vivaldi EA
    Sleep; 2014 Jan; 37(1):199-208. PubMed ID: 24470709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring respiration and cardiac activity during sleep using microbend fiber sensor: A clinical study and new algorithm.
    Chen Z; Teo JT; Ng SH; Yang X; Zhou B; Zhang Y; Loo HP; Zhang H; Thong M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5377-80. PubMed ID: 25571209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of forehead venous pressure as a measure of respiratory effort for the diagnosis of sleep apnea.
    Popovic D; King C; Guerrero M; Levendowski DJ; Henninger D; Westbrook PR
    J Clin Monit Comput; 2009 Feb; 23(1):1-10. PubMed ID: 19116764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of respiratory effort during sleep: Esophageal pressure versus noninvasive monitoring techniques.
    Vandenbussche NL; Overeem S; van Dijk JP; Simons PJ; Pevernagie DA
    Sleep Med Rev; 2015 Dec; 24():28-36. PubMed ID: 25644984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of three methods for extracting respiration from the surface ECG: a review.
    Helfenbein E; Firoozabadi R; Chien S; Carlson E; Babaeizadeh S
    J Electrocardiol; 2014; 47(6):819-25. PubMed ID: 25194875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphic Sensors for Respiratory Parameters Estimation: Validation against Overnight Polysomnography.
    Naik GR; Breen PP; Jayarathna T; Tong BK; Eckert DJ; Gargiulo GD
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep apnoea diagnosis using respiratory effort-based signals - a comparative study.
    Sadr N; Jayawardhana M; de Chazal P
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1551-1554. PubMed ID: 29060176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Diagnosis of sleep disordered breathing using portable methods].
    Penzel T; Blau A; Garcia C; Schöbel C; Sebert M; Baumann G; Fietze I
    Pneumologie; 2013 Feb; 67(2):112-7. PubMed ID: 23247596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Comparison of Respiratory Signals for the Automated Detection of Sleep Apnea.
    Van Steenkiste T; Groenendaal W; Ruyssinck J; Dreesen P; Klerkx S; Smeets C; de Francisco R; Deschrijver D; Dhaene T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():449-452. PubMed ID: 30440431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Approach for Detecting Sleep Apnea Using a Contactless Bed Sensor: Comparison Study.
    Sadek I; Heng TTS; Seet E; Abdulrazak B
    J Med Internet Res; 2020 Sep; 22(9):e18297. PubMed ID: 32945773
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.