BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36608517)

  • 1. Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology.
    Zhou X; Zhao C; Sun J; Yao K; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122288. PubMed ID: 36608517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of lead content in oilseed rape leaves in silicon-free and silicon environments based on deep transfer learning and fluorescence hyperspectral imaging.
    Zhou X; Zhao C; Sun J; Cheng J; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():123991. PubMed ID: 38330763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging.
    Zhou X; Zhao C; Sun J; Cao Y; Yao K; Xu M
    Food Chem; 2023 May; 409():135251. PubMed ID: 36586261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm.
    Zhou X; Sun J; Tian Y; Yao K; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120460. PubMed ID: 34637985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging.
    Fu L; Sun J; Wang S; Xu M; Yao K; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121641. PubMed ID: 35870430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive testing and visualization of compound heavy metals in lettuce leaves using fluorescence hyperspectral imaging.
    Zhou X; Zhao C; Sun J; Yao K; Xu M; Cheng J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122337. PubMed ID: 36680832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Rapid detection of nitrogen content and distribution in oilseed rape leaves based on hyperspectral imaging].
    Zhang XL; Liu F; Nie PC; He Y; Bao YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2513-8. PubMed ID: 25532355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of
    Kong W; Zhang C; Cao F; Liu F; Luo S; Tang Y; He Y
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperspectral technique combined with stacking and blending ensemble learning method for detection of cadmium content in oilseed rape leaves.
    Cheng J; Sun J; Yao K; Xu M; Wang S; Fu L
    J Sci Food Agric; 2023 Mar; 103(5):2690-2699. PubMed ID: 36479694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Hyperspectral Imaging to Detect Sclerotinia sclerotiorum on Oilseed Rape Stems.
    Kong W; Zhang C; Huang W; Liu F; He Y
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29300315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of multi-disturbance bagging Extreme Learning Machine method for cadmium content prediction of rape leaf using hyperspectral imaging technology.
    Cheng J; Sun J; Yao K; Xu M; Wang S; Fu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121479. PubMed ID: 35696971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Fast determination of malondialdehyde in oilseed rape leaves using near infrared spectroscopy].
    Kong WW; Liu F; Zou Q; Fang H; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):988-91. PubMed ID: 21714244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties.
    Cao X; Wang X; Tong W; Gurajala HK; Lu M; Hamid Y; Feng Y; He Z; Yang X
    Environ Pollut; 2019 Sep; 252(Pt A):733-741. PubMed ID: 31200201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of acetolactate synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using visible/near-infrared spectroscopy.
    Liu F; Zhang F; Jin Z; He Y; Fang H; Ye Q; Zhou W
    Anal Chim Acta; 2008 Nov; 629(1-2):56-65. PubMed ID: 18940321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].
    Li XL; Yi SL; He SL; Lü Q; Xie RJ; Zheng YQ; Deng L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2639-43. PubMed ID: 26669182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique].
    Ding XB; Liu F; Zhang C; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):486-91. PubMed ID: 25970918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Visible and Near-Infrared Hyperspectral Imaging to Determine Soluble Protein Content in Oilseed Rape Leaves.
    Zhang C; Liu F; Kong W; He Y
    Sensors (Basel); 2015 Jul; 15(7):16576-88. PubMed ID: 26184198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Application of successive projections algorithm to nondestructive determination of total amino acids in oilseed rape leaves].
    Liu F; Zhang F; Fang H; Jin ZL; Zhou WJ; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3079-83. PubMed ID: 20101990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging.
    Kong W; Liu F; Zhang C; Zhang J; Feng H
    Sci Rep; 2016 Oct; 6():35393. PubMed ID: 27739491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria.
    Baranowski P; Jedryczka M; Mazurek W; Babula-Skowronska D; Siedliska A; Kaczmarek J
    PLoS One; 2015; 10(3):e0122913. PubMed ID: 25826369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.