BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 36608858)

  • 1. Artificial intelligence and machine learning approaches in composting process: A review.
    Aydın Temel F; Cagcag Yolcu O; Turan NG
    Bioresour Technol; 2023 Feb; 370():128539. PubMed ID: 36608858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning methods for the modelling and optimisation of biogas production from anaerobic digestion: a review.
    Ling JYX; Chan YJ; Chen JW; Chong DJS; Tan ALL; Arumugasamy SK; Lau PL
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):19085-19104. PubMed ID: 38376778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture.
    Hesami M; Jones AMP
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9449-9485. PubMed ID: 32984921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Prediction Model for Demolition Waste Generation Using a Random Forest Algorithm Based on Small DataSets.
    Cha GW; Moon HJ; Kim YM; Hong WH; Hwang JH; Park WJ; Kim YC
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32987874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization.
    Teferra DM; Ngoo LMH; Nyakoe GN
    Heliyon; 2023 Jan; 9(1):e12802. PubMed ID: 36704286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes.
    Obi CC; Nwabanne JT; Igwegbe CA; Abonyi MN; Umembamalu CJ; Kamuche TT
    J Environ Manage; 2024 Feb; 353():120161. PubMed ID: 38290261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence techniques in electrochemical processes for water and wastewater treatment: a review.
    Shirkoohi MG; Tyagi RD; Vanrolleghem PA; Drogui P
    J Environ Health Sci Eng; 2022 Dec; 20(2):1089-1109. PubMed ID: 36406623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining a gravitational search algorithm, particle swarm optimization, and fuzzy rules to improve the classification performance of a feed-forward neural network.
    Huang ML; Chou YC
    Comput Methods Programs Biomed; 2019 Oct; 180():105016. PubMed ID: 31442736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting maturity and identifying key factors in organic waste composting using machine learning models.
    Wang N; Yang W; Wang B; Bai X; Wang X; Xu Q
    Bioresour Technol; 2024 May; 400():130663. PubMed ID: 38583671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Individual Gas Yields of Supercritical Water Gasification of Lignocellulosic Biomass by Machine Learning Models.
    Khandelwal K; Dalai AK
    Molecules; 2024 May; 29(10):. PubMed ID: 38792198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence.
    Fan M; Hu J; Cao R; Ruan W; Wei X
    Chemosphere; 2018 Jun; 200():330-343. PubMed ID: 29494914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction.
    Rashid J; Batool S; Kim J; Wasif Nisar M; Hussain A; Juneja S; Kushwaha R
    Front Public Health; 2022; 10():860396. PubMed ID: 35433587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bubbly flow prediction with randomized neural cells artificial learning and fuzzy systems based on k-ε turbulence and Eulerian model data set.
    Babanezhad M; Pishnamazi M; Marjani A; Shirazian S
    Sci Rep; 2020 Aug; 10(1):13837. PubMed ID: 32796869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning.
    Isabona J; Imoize AL; Kim Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of artificial intelligence with particle swarm optimization (PSO) to predict treatment water plant DBPs (haloacetic acids).
    Okoji AI; Okoji CN; Awarun OS
    Chemosphere; 2023 Dec; 344():140238. PubMed ID: 37788747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learning intervention progress in the field of organic waste composting: Simulation, prediction, optimization, and challenges.
    Huang LT; Hou JY; Liu HT
    Waste Manag; 2024 Apr; 178():155-167. PubMed ID: 38401429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of spray drying process parameters for the food bioactive ingredients.
    Homayoonfal M; Malekjani N; Baeghbali V; Ansarifar E; Hedayati S; Jafari SM
    Crit Rev Food Sci Nutr; 2024; 64(17):5631-5671. PubMed ID: 36547397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection Systems: Cloud Computing Environments.
    Aldhyani THH; Alkahtani H
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.