BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36609507)

  • 1. Automatic purpose-driven basis set truncation for time-dependent Hartree-Fock and density-functional theory.
    Han R; Mattiat J; Luber S
    Nat Commun; 2023 Jan; 14(1):106. PubMed ID: 36609507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural excitation orbitals from linear response theories: Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Phys; 2017 Jan; 146(4):044119. PubMed ID: 28147540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-time Fourier transform analysis of real-time time-dependent Hartree-Fock and time-dependent density functional theory calculations with Gaussian basis functions.
    Akama T; Nakai H
    J Chem Phys; 2010 Feb; 132(5):054104. PubMed ID: 20136302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.
    Cao Y; Hughes T; Giesen D; Halls MD; Goldberg A; Vadicherla TR; Sastry M; Patel B; Sherman W; Weisman AL; Friesner RA
    J Comput Chem; 2016 Jun; 37(16):1425-41. PubMed ID: 27013141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation.
    Isegawa M; Truhlar DG
    J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the doubly excited state with time-dependent Hartree-Fock and density functional theories.
    Isborn CM; Li X
    J Chem Phys; 2008 Nov; 129(20):204107. PubMed ID: 19045852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Electronic Modes by Fourier Transform from δ-Kick Time-Evolution TDDFT Calculations.
    Sinha-Roy R; García-González P; López Lozano X; Whetten RL; Weissker HC
    J Chem Theory Comput; 2018 Dec; 14(12):6417-6426. PubMed ID: 30404453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-Dependent Coupled Perturbed Hartree-Fock and Density-Functional-Theory Approach for Calculating Frequency-Dependent (Hyper)Polarizabilities with Nonorthogonal Localized Molecular Orbitals.
    Peng D; Li S; Peng L; Gu FL; Yang W
    J Chem Theory Comput; 2017 Sep; 13(9):4101-4112. PubMed ID: 28806078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singlet-Triplet Transitions in Real-Time Time-Dependent Hartree-Fock/Density Functional Theory.
    Isborn CM; Li X
    J Chem Theory Comput; 2009 Sep; 5(9):2415-9. PubMed ID: 26616622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent density functional theory based upon the fragment molecular orbital method.
    Chiba M; Fedorov DG; Kitaura K
    J Chem Phys; 2007 Sep; 127(10):104108. PubMed ID: 17867738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree-Fock and density functional theory via linear response.
    Yanai T; Fann GI; Beylkin G; Harrison RJ
    Phys Chem Chem Phys; 2015 Dec; 17(47):31405-16. PubMed ID: 25711489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the ONIOM hybrid method to apply equation of motion CCSD to larger systems: benchmarking and comparison with time-dependent density functional theory, configuration interaction singles, and time-dependent Hartree-Fock.
    Caricato M; Vreven T; Trucks GW; Frisch MJ; Wiberg KB
    J Chem Phys; 2009 Oct; 131(13):134105. PubMed ID: 19814541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent errors in real-time electron density propagation.
    Ranka K; Isborn CM
    J Chem Phys; 2023 May; 158(17):. PubMed ID: 37125706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonadiabatic Dynamics for Electrons at Second-Order: Real-Time TDDFT and OSCF2.
    Nguyen TS; Parkhill J
    J Chem Theory Comput; 2015 Jul; 11(7):2918-24. PubMed ID: 26575729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?
    Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y
    J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced-Scaling Approach for Configuration Interaction Singles and Time-Dependent Density Functional Theory Calculations Using Hybrid Functionals.
    Mester D; Kállay M
    J Chem Theory Comput; 2019 Mar; 15(3):1690-1704. PubMed ID: 30703327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Investigation of Excited States of Large Polyene Cations as Model Systems for Lightly Doped Polyacetylene.
    Salzner U
    J Chem Theory Comput; 2007 Jan; 3(1):219-31. PubMed ID: 26627167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Straightforward and Accurate Automatic Auxiliary Basis Set Generation for Molecular Calculations with Atomic Orbital Basis Sets.
    Lehtola S
    J Chem Theory Comput; 2021 Nov; 17(11):6886-6900. PubMed ID: 34614349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Semi-numerical Implementation of Global and Local Hybrid Functionals for Time-Dependent Density Functional Theory.
    Maier TM; Bahmann H; Kaupp M
    J Chem Theory Comput; 2015 Sep; 11(9):4226-37. PubMed ID: 26575918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization.
    Petrenko T; Kossmann S; Neese F
    J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.