BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36609609)

  • 1. Enzyme-independent catabolism of cysteine with pyridoxal-5'-phosphate.
    Mulay P; Chen C; Krishna V
    Sci Rep; 2023 Jan; 13(1):312. PubMed ID: 36609609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the catalytic mechanism of cysteine (hydroxyl) lyase from the hydrogen sulfide-producing oral pathogen,
    Kezuka Y; Ishida T; Yoshida Y; Nonaka T
    Biochem J; 2018 Feb; 475(4):733-748. PubMed ID: 29343611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Kinetic Insight into the Biosynthesis of H
    Mothersole RG; Wolthers KR
    Biochemistry; 2019 Aug; 58(34):3592-3603. PubMed ID: 31398016
    [No Abstract]   [Full Text] [Related]  

  • 4. Snapshots of PLP-substrate and PLP-product external aldimines as intermediates in two types of cysteine desulfurase enzymes.
    Nakamura R; Hikita M; Ogawa S; Takahashi Y; Fujishiro T
    FEBS J; 2020 Mar; 287(6):1138-1154. PubMed ID: 31587510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of pyridoxal 5'-phosphate from O-acetylserine sulfhydrylase from Salmonella typhimurium and reconstitution of apoenzyme with cofactor and cofactor analogues as a probe of the cofactor binding site.
    Schnackerz KD; Cook PF
    Arch Biochem Biophys; 1995 Dec; 324(1):71-7. PubMed ID: 7503562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fold Type II PLP-Dependent Enzyme from
    Darbyshire AL; Mothersole RG; Wolthers KR
    Biochemistry; 2021 Feb; 60(7):524-536. PubMed ID: 33539704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-(3-Hydroxy-5-phosphonooxymethyl-2-methyl-4-pyridyl)-1,3-thiazolidine-4-carboxylic Acid, Novel Metabolite of Pyridoxal 5'-Phosphate and Cysteine Is Present in Human Plasma-Chromatographic Investigations.
    Piechocka J; Wrońska M; Głowacka IE; Głowacki R
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32443403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B
    Yang J; Minkler P; Grove D; Wang R; Willard B; Dweik R; Hine C
    Commun Biol; 2019; 2():194. PubMed ID: 31123718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin B-6 restriction reduces the production of hydrogen sulfide and its biomarkers by the transsulfuration pathway in cultured human hepatoma cells.
    DeRatt BN; Ralat MA; Kabil O; Chi YY; Banerjee R; Gregory JF
    J Nutr; 2014 Oct; 144(10):1501-8. PubMed ID: 25165392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.
    Griswold WR; Toney MD
    J Am Chem Soc; 2011 Sep; 133(37):14823-30. PubMed ID: 21827189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis on human cystathionine-gamma-lyase reveals insights into the modulation of H2S production.
    Huang S; Chua JH; Yew WS; Sivaraman J; Moore PK; Tan CH; Deng LW
    J Mol Biol; 2010 Feb; 396(3):708-18. PubMed ID: 19961860
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Yadav PK; Vitvitsky V; Kim H; White A; Cho US; Banerjee R
    J Biol Chem; 2019 Jul; 294(28):11011-11022. PubMed ID: 31160338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereospecificity for the hydrogen transfer and molecular evolution of pyridoxal enzymes.
    Yoshimura T; Jhee KH; Soda K
    Biosci Biotechnol Biochem; 1996 Feb; 60(2):181-7. PubMed ID: 9063963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin B6 nutritional status and cellular availability of pyridoxal 5'-phosphate govern the function of the transsulfuration pathway's canonical reactions and hydrogen sulfide production via side reactions.
    Gregory JF; DeRatt BN; Rios-Avila L; Ralat M; Stacpoole PW
    Biochimie; 2016 Jul; 126():21-6. PubMed ID: 26765812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PLP undergoes conformational changes during the course of an enzymatic reaction.
    Ngo HP; Cerqueira NM; Kim JK; Hong MK; Fernandes PA; Ramos MJ; Kang LW
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):596-606. PubMed ID: 24531493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and NMR properties of 2-(4-pyridyl) thiazolidine-4-carboxylic acids.
    Ponticelli F; Pagani R; Missale MC; Leoncini R; Vannoni D; Marinello E
    Ital J Biochem; 1983; 32(2):92-101. PubMed ID: 6629729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-cysteine desulfidase: an [4Fe-4S] enzyme isolated from Methanocaldococcus jannaschii that catalyzes the breakdown of L-cysteine into pyruvate, ammonia, and sulfide.
    Tchong SI; Xu H; White RH
    Biochemistry; 2005 Feb; 44(5):1659-70. PubMed ID: 15683250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme.
    Vacca RA; Giannattasio S; Capitani G; Marra E; Christen P
    BMC Biochem; 2008 Jun; 9():17. PubMed ID: 18565210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into catalysis by βC-S lyase from Streptococcus anginosus.
    Kezuka Y; Yoshida Y; Nonaka T
    Proteins; 2012 Oct; 80(10):2447-58. PubMed ID: 22674431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes.
    Ngo HP; Nguyen DQ; Park H; Park YS; Kwak K; Kim T; Lee JH; Cho KS; Kang LW
    BMB Rep; 2022 Sep; 55(9):439-446. PubMed ID: 36104257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.