These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36609643)

  • 1. A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography.
    Kim YT; Ahmadianyazdi A; Folch A
    Nat Protoc; 2023 Apr; 18(4):1243-1259. PubMed ID: 36609643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Precision Stereolithography of Biomicrofluidic Devices.
    Kuo AP; Bhattacharjee N; Lee YS; Castro K; Kim YT; Folch A
    Adv Mater Technol; 2019 Jun; 4(6):. PubMed ID: 32490168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography.
    Kim YT; Castro K; Bhattacharjee N; Folch A
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printing of transparent bio-microfluidic devices in PEG-DA.
    Urrios A; Parra-Cabrera C; Bhattacharjee N; Gonzalez-Suarez AM; Rigat-Brugarolas LG; Nallapatti U; Samitier J; DeForest CA; Posas F; Garcia-Cordero JL; Folch A
    Lab Chip; 2016 Jun; 16(12):2287-94. PubMed ID: 27217203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partitioning of hydrogels in 3D-printed microchannels.
    Kim YT; Bohjanen S; Bhattacharjee N; Folch A
    Lab Chip; 2019 Sep; 19(18):3086-3093. PubMed ID: 31502633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
    Musgrove HB; Catterton MA; Pompano RR
    Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable resins with PDMS-like elastic modulus for stereolithographic 3D-printing of multimaterial microfluidic actuators.
    Ahmadianyazdi A; Miller IJ; Folch A
    Lab Chip; 2023 Sep; 23(18):4019-4032. PubMed ID: 37584639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addendum: A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography.
    Kim YT; Ahmadianyazdi A; Folch A
    Nat Protoc; 2023 Apr; 18(4):1377. PubMed ID: 36899100
    [No Abstract]   [Full Text] [Related]  

  • 11. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advantages of stereolithographic 3D printing in the fabrication of the Affiblot device for dot-blot assays.
    Novotny J; Svobodova Z; Ilicova M; Hruskova D; Kostalova J; Bilkova Z; Foret F
    Mikrochim Acta; 2024 Jul; 191(8):442. PubMed ID: 38954238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer.
    Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionality integration in stereolithography 3D printed microfluidics using a "print-pause-print" strategy.
    Sagot M; Derkenne T; Giunchi P; Davit Y; Nougayrède JP; Tregouet C; Raimbault V; Malaquin L; Venzac B
    Lab Chip; 2024 Jul; 24(14):3508-3520. PubMed ID: 38934387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting.
    Miri AK; Nieto D; Iglesias L; Goodarzi Hosseinabadi H; Maharjan S; Ruiz-Esparza GU; Khoshakhlagh P; Manbachi A; Dokmeci MR; Chen S; Shin SR; Zhang YS; Khademhosseini A
    Adv Mater; 2018 Jul; 30(27):e1800242. PubMed ID: 29737048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.