These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 36609989)
41. Synthesis of Visible Light Excitable Carbon Dot Phosphor-Al Lu D; Lu K; Wen HT; Wei Z; Bianco A; Wang GG; Zhang HY Small; 2023 Aug; 19(31):e2207046. PubMed ID: 36960674 [TBL] [Abstract][Full Text] [Related]
42. Hour-Level Persistent Multicolor Phosphorescence Enabled by Carbon Dot-Based Nanocomposites Through a Multi-Confinement-Based Approach. Hu H; Li J; Gong X Small; 2024 Jun; 20(23):e2308457. PubMed ID: 38126697 [TBL] [Abstract][Full Text] [Related]
43. Simple Strategy for Scalable Preparation Carbon Dots: RTP, Time-Dependent Fluorescence, and NIR Behaviors. Bai J; Yuan G; Chen X; Zhang L; Zhu Y; Wang X; Ren L Adv Sci (Weinh); 2022 Feb; 9(5):e2104278. PubMed ID: 34962091 [TBL] [Abstract][Full Text] [Related]
44. Rationally Designed Matrix-Free Carbon Dots with Wavelength-Tunable Room-Temperature Phosphorescence. Qi H; Cui X; Zhang H; Tong Y; Qian M; Zhou W; Ding S; Qi H Chem Asian J; 2023 Mar; 18(6):e202201284. PubMed ID: 36719254 [TBL] [Abstract][Full Text] [Related]
45. Tailored Fabrication of Full-Color Ultrastable Room-Temperature Phosphorescence Carbon Dots Composites with Unexpected Thermally Activated Delayed Fluorescence. Ai L; Xiang W; Xiao J; Liu H; Yu J; Zhang L; Wu X; Qu X; Lu S Adv Mater; 2024 Jul; 36(27):e2401220. PubMed ID: 38652510 [TBL] [Abstract][Full Text] [Related]
46. Facile preparation strategy of novel B Jin X; Zhao H; Bai H; Ding L; Chen W Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123473. PubMed ID: 37857077 [TBL] [Abstract][Full Text] [Related]
47. Influence of chemical treatment and interaction with matrix on room temperature phosphorescence of carbon dots. Arefina IA; Erokhina DV; Ushakova EV Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38806016 [TBL] [Abstract][Full Text] [Related]
48. A facile co-crystallization approach to fabricate two-component carbon dot composites showing time-dependent evolutive room temperature phosphorescence colors. Qu J; Zhang X; Zhang S; Wang Z; Yu Y; Ding H; Tang Z; Heng X; Wang R; Jing S Nanoscale Adv; 2021 Aug; 3(17):5053-5061. PubMed ID: 36132350 [TBL] [Abstract][Full Text] [Related]
49. Matrix-Free and Highly Efficient Room-Temperature Phosphorescence of Nitrogen-Doped Carbon Dots. Gao Y; Han H; Lu W; Jiao Y; Liu Y; Gong X; Xian M; Shuang S; Dong C Langmuir; 2018 Oct; 34(43):12845-12852. PubMed ID: 30346780 [TBL] [Abstract][Full Text] [Related]
50. Supramolecular Purely Organic Room-Temperature Phosphorescence. Ma XK; Liu Y Acc Chem Res; 2021 Sep; 54(17):3403-3414. PubMed ID: 34403251 [TBL] [Abstract][Full Text] [Related]
51. A Molecular Engineering Strategy for Achieving Blue Phosphorescent Carbon Dots with Outstanding Efficiency above 50. Song Z; Shang Y; Lou Q; Zhu J; Hu J; Xu W; Li C; Chen X; Liu K; Shan CX; Bai X Adv Mater; 2023 Feb; 35(6):e2207970. PubMed ID: 36413559 [TBL] [Abstract][Full Text] [Related]
52. Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long-Lived Room-Temperature Phosphorescence in Aqueous Environment. Wang C; Qu L; Chen X; Zhou Q; Yang Y; Zheng Y; Zheng X; Gao L; Hao J; Zhu L; Pi B; Yang C Adv Mater; 2022 Aug; 34(34):e2204415. PubMed ID: 35731029 [TBL] [Abstract][Full Text] [Related]
53. Lifetime-tunable room-temperature phosphorescence of polyaniline carbon dots in adjustable polymer matrices. Gou H; Liu Y; Zhang G; Liao Q; Huang X; Ning F; Ke C; Meng Z; Xi K Nanoscale; 2019 Oct; 11(39):18311-18319. PubMed ID: 31573008 [TBL] [Abstract][Full Text] [Related]
54. Facile Synthesis and Multiple Application of Ultralong-Afterglow Room Temperature Phosphorescence Aggregate Carbon Dots from Simple Raw Materials. Zhu W; Wang L; Yang W; Chen Y; Liu Z; Li Y; Xue Y J Fluoresc; 2024 Nov; 34(6):2601-2612. PubMed ID: 37861967 [TBL] [Abstract][Full Text] [Related]
55. Achieving Tunable Organic Afterglow and UV-Irradiation-Responsive Ultralong Room-Temperature Phosphorescence from Pyridine-Substituted Triphenylamine Derivatives. Xiong S; Xiong Y; Wang D; Pan Y; Chen K; Zhao Z; Wang D; Tang BZ Adv Mater; 2023 Jul; 35(28):e2301874. PubMed ID: 37026437 [TBL] [Abstract][Full Text] [Related]
56. Employing metformin-directed carbon dots with room-temperature phosphorescent towards the dual-channel detection of L-tryptophan. Feng Z; Wang J; Chen X; Liu J; Zhu Y; Yang X Colloids Surf B Biointerfaces; 2022 Feb; 210():112236. PubMed ID: 34836704 [TBL] [Abstract][Full Text] [Related]
57. Prepared carbon dots from wheat straw for detection of Cu Shi J; Zhou Y; Ning J; Hu G; Zhang Q; Hou Y; Zhou Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121597. PubMed ID: 35820342 [TBL] [Abstract][Full Text] [Related]
58. Full-color Persistent Room-temperature Phosphorescence from Carbon Dot Composites Based on a Single Nonaromatic Carbon Source. Wang X; Wang S; Huang Y; Huang L; Sun J; Lin Z Chem Asian J; 2023 Jan; 18(2):e202201027. PubMed ID: 36451290 [TBL] [Abstract][Full Text] [Related]
59. Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method. Wang C; Chen Y; Hu T; Chang Y; Ran G; Wang M; Song Q Nanoscale; 2019 Jun; 11(24):11967-11974. PubMed ID: 31188373 [TBL] [Abstract][Full Text] [Related]
60. Carbon Dots-Inked Paper with Single/Two-Photon Excited Dual-Mode Thermochromic Afterglow for Advanced Dynamic Information Encryption. Liu Y; Cheng D; Wang B; Yang J; Hao Y; Tan J; Li Q; Qu S Adv Mater; 2024 Aug; 36(31):e2403775. PubMed ID: 38738804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]