These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36610078)

  • 1. DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies.
    He R; Liu M; Lin Z; Zhuang Z; Shen X; Pan W
    Biostatistics; 2024 Apr; 25(2):468-485. PubMed ID: 36610078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical power of transcriptome-wide association studies.
    He R; Xue H; Pan W;
    Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies.
    Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W
    Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some statistical consideration in transcriptome-wide association studies.
    Xue H; Pan W;
    Genet Epidemiol; 2020 Apr; 44(3):221-232. PubMed ID: 31821608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data.
    Xue H; Shen X; Pan W
    J Am Stat Assoc; 2023; 118(543):1525-1537. PubMed ID: 37808547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TWAS-GKF: a novel method for causal gene identification in transcriptome-wide association studies with knockoff inference.
    Wang A; Tian P; Zhang YD
    Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39189955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring causal direction between two traits using R
    Liao H; Xue H; Pan W
    Am J Hum Genet; 2024 Aug; 111(8):1782-1795. PubMed ID: 39053457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.
    Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.
    Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P
    PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits.
    Knutson KA; Pan W
    Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities and challenges for transcriptome-wide association studies.
    Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A
    Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network regression analysis in transcriptome-wide association studies.
    Jin X; Zhang L; Ji J; Ju T; Zhao J; Yuan Z
    BMC Genomics; 2022 Aug; 23(1):562. PubMed ID: 35933330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multitrait transcriptome-wide association study (TWAS) tests.
    Feng H; Mancuso N; Pasaniuc B; Kraft P
    Genet Epidemiol; 2021 Sep; 45(6):563-576. PubMed ID: 34082479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression.
    Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI
    Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue specificity-aware TWAS (TSA-TWAS) framework identifies novel associations with metabolic, immunologic, and virologic traits in HIV-positive adults.
    Li B; Veturi Y; Verma A; Bradford Y; Daar ES; Gulick RM; Riddler SA; Robbins GK; Lennox JL; Haas DW; Ritchie MD
    PLoS Genet; 2021 Apr; 17(4):e1009464. PubMed ID: 33901188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci.
    Ghaffar A; ; Nyholt DR
    Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large-scale transcriptome-wide association study (TWAS) of 10 blood cell phenotypes reveals complexities of TWAS fine-mapping.
    Tapia AL; Rowland BT; Rosen JD; Preuss M; Young K; Graff M; Choquet H; Couper DJ; Buyske S; Bien SA; Jorgenson E; Kooperberg C; Loos RJF; Morrison AC; North KE; Yu B; Reiner AP; Li Y; Raffield LM
    Genet Epidemiol; 2022 Feb; 46(1):3-16. PubMed ID: 34779012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies.
    Zeng P; Dai J; Jin S; Zhou X
    Hum Mol Genet; 2021 May; 30(10):939-951. PubMed ID: 33615361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Variance-Component TWAS method for studying complex human diseases with applications to Alzheimer's dementia.
    Tang S; Buchman AS; De Jager PL; Bennett DA; Epstein MP; Yang J
    PLoS Genet; 2021 Apr; 17(4):e1009482. PubMed ID: 33798195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.