These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36610570)
1. Development of highly-reproducible hydrogel based bioink for regeneration of skin-tissues via 3-D bioprinting technology. Ullah F; Javed F; Mushtaq I; Rahman LU; Ahmed N; Din IU; Alotaibi MA; Alharthi AI; Ahmad A; Bakht MA; Khan F; Tasleem S Int J Biol Macromol; 2023 Mar; 230():123131. PubMed ID: 36610570 [TBL] [Abstract][Full Text] [Related]
2. Highly gallol-substituted, rapidly self-crosslinkable, and robust chitosan hydrogel for 3D bioprinting. Gwak MA; Lee SJ; Lee D; Park SA; Park WH Int J Biol Macromol; 2023 Feb; 227():493-504. PubMed ID: 36535357 [TBL] [Abstract][Full Text] [Related]
3. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
4. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
7. Bioprinting and Preliminary Testing of Highly Reproducible Novel Bioink for Potential Skin Regeneration. Hafezi F; Shorter S; Tabriz AG; Hurt A; Elmes V; Boateng J; Douroumis D Pharmaceutics; 2020 Jun; 12(6):. PubMed ID: 32545741 [TBL] [Abstract][Full Text] [Related]
8. Phage as versatile nanoink for printing 3-D cell-laden scaffolds. Lee DY; Lee H; Kim Y; Yoo SY; Chung WJ; Kim G Acta Biomater; 2016 Jan; 29():112-124. PubMed ID: 26441128 [TBL] [Abstract][Full Text] [Related]
9. A targeted rheological bioink development guideline and its systematic correlation with printing behavior. Pössl A; Hartzke D; Schmidts TM; Runkel FE; Schlupp P Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33472177 [TBL] [Abstract][Full Text] [Related]
10. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
11. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285 [TBL] [Abstract][Full Text] [Related]
12. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
13. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
14. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
15. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
16. FRESH-based 3D bioprinting of complex biological geometries using chitosan bioink. Chaurasia P; Singh R; Mahto SK Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38942010 [TBL] [Abstract][Full Text] [Related]
17. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
18. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031 [TBL] [Abstract][Full Text] [Related]
19. 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Rastin H; Ramezanpour M; Hassan K; Mazinani A; Tung TT; Vreugde S; Losic D Carbohydr Polym; 2021 Jul; 264():117989. PubMed ID: 33910727 [TBL] [Abstract][Full Text] [Related]
20. An Adhesive Bioink toward Biofabrication under Wet Conditions. Li W; Wang M; Wang S; Wang X; Avila A; Kuang X; Mu X; Garciamendez CE; Jiang Z; Manríquez J; Tang G; Guo J; Mille LS; Robledo JA; Wang D; Cheng F; Li H; Flores RS; Zhao Z; Delavaux C; Wang Z; López A; Yi S; Zhou C; Gómez A; Schuurmans C; Yang GY; Wang Y; Zhang X; Zhang X; Zhang YS Small; 2023 Dec; 19(50):e2205078. PubMed ID: 36587991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]