These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 36610608)

  • 1. Negation-based transfer learning for improving biomedical Named Entity Recognition and Relation Extraction.
    Fabregat H; Duque A; Martinez-Romo J; Araujo L
    J Biomed Inform; 2023 Feb; 138():104279. PubMed ID: 36610608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study.
    Rivera Zavala R; Martinez P
    JMIR Med Inform; 2020 Dec; 8(12):e18953. PubMed ID: 33270027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural negated entity recognition in Spanish electronic health records.
    Santiso S; Pérez A; Casillas A; Oronoz M
    J Biomed Inform; 2020 May; 105():103419. PubMed ID: 32298847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization.
    Rivera-Zavala RM; Martínez P
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):601. PubMed ID: 34920703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition.
    Cho M; Ha J; Park C; Park S
    J Biomed Inform; 2020 Mar; 103():103381. PubMed ID: 32004641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical named entity recognition using deep neural networks with contextual information.
    Cho H; Lee H
    BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of clinical named entity recognition methods for Serbian electronic health records.
    Kaplar A; Stošović M; Kaplar A; Brković V; Naumović R; Kovačević A
    Int J Med Inform; 2022 Aug; 164():104805. PubMed ID: 35653828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MMBERT: a unified framework for biomedical named entity recognition.
    Fu L; Weng Z; Zhang J; Xie H; Cao Y
    Med Biol Eng Comput; 2024 Jan; 62(1):327-341. PubMed ID: 37833517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating deep learning architectures for enhanced biomedical relation extraction: a pipeline approach.
    Sarol MJ; Hong G; Guerra E; Kilicoglu H
    Database (Oxford); 2024 Aug; 2024():. PubMed ID: 39197056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Medical Entity Recognition in Health Care: Entity Model Quantitative Study.
    Liu S; Wang A; Xiu X; Zhong M; Wu S
    JMIR Med Inform; 2024 Oct; 12():e59782. PubMed ID: 39419501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Named Entity Recognition Using Deep Learning Models.
    Wu Y; Jiang M; Xu J; Zhi D; Xu H
    AMIA Annu Symp Proc; 2017; 2017():1812-1819. PubMed ID: 29854252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges in clinical natural language processing for automated disorder normalization.
    Leaman R; Khare R; Lu Z
    J Biomed Inform; 2015 Oct; 57():28-37. PubMed ID: 26187250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features.
    Tang B; Cao H; Wu Y; Jiang M; Xu H
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 23566040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-stage deep learning approach for extracting entities and relationships from medical texts.
    Suárez-Paniagua V; Rivera Zavala RM; Segura-Bedmar I; Martínez P
    J Biomed Inform; 2019 Nov; 99():103285. PubMed ID: 31546016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UMLS-based data augmentation for natural language processing of clinical research literature.
    Kang T; Perotte A; Tang Y; Ta C; Weng C
    J Am Med Inform Assoc; 2021 Mar; 28(4):812-823. PubMed ID: 33367705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adversarial active learning for the identification of medical concepts and annotation inconsistency.
    Yu G; Yang Y; Wang X; Zhen H; He G; Li Z; Zhao Y; Shu Q; Shu L
    J Biomed Inform; 2020 Aug; 108():103481. PubMed ID: 32687985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations.
    Munkhdalai T; Li M; Batsuren K; Park HA; Choi NH; Ryu KH
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S9. PubMed ID: 25810780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble pretrained language models to extract biomedical knowledge from literature.
    Li Z; Wei Q; Huang LC; Li J; Hu Y; Chuang YS; He J; Das A; Keloth VK; Yang Y; Diala CS; Roberts KE; Tao C; Jiang X; Zheng WJ; Xu H
    J Am Med Inform Assoc; 2024 Sep; 31(9):1904-1911. PubMed ID: 38520725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-head CRF classifier for biomedical multi-class named entity recognition on Spanish clinical notes.
    Jonker RAA; Almeida T; Antunes R; Almeida JR; Matos S
    Database (Oxford); 2024 Jul; 2024():. PubMed ID: 39083461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.