These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding. Chen H; Egger M; Xu X; Flemmich L; Krasheninina O; Sun A; Micura R; Ren A Nucleic Acids Res; 2020 Dec; 48(21):12394-12406. PubMed ID: 33170270 [TBL] [Abstract][Full Text] [Related]
7. Structure-based characterization and compound identification of the wild-type THF class-II riboswitch. Li C; Xu X; Geng Z; Zheng L; Song Q; Shen X; Wu J; Zhao J; Li H; He M; Tai X; Zhang L; Ma J; Dong Y; Ren A Nucleic Acids Res; 2024 Aug; 52(14):8454-8465. PubMed ID: 38769061 [TBL] [Abstract][Full Text] [Related]
8. Structure and ligand binding of the ADP-binding domain of the NAD Huang L; Wang J; Lilley DMJ RNA; 2020 Jul; 26(7):878-887. PubMed ID: 32295864 [TBL] [Abstract][Full Text] [Related]
9. Insights into xanthine riboswitch structure and metal ion-mediated ligand recognition. Xu X; Egger M; Chen H; Bartosik K; Micura R; Ren A Nucleic Acids Res; 2021 Jul; 49(12):7139-7153. PubMed ID: 34125892 [TBL] [Abstract][Full Text] [Related]
10. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Haller A; Soulière MF; Micura R Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902 [TBL] [Abstract][Full Text] [Related]
11. Nucleobase mutants of a bacterial preQ Dutta D; Wedekind JE J Biol Chem; 2020 Feb; 295(9):2555-2567. PubMed ID: 31659117 [TBL] [Abstract][Full Text] [Related]
12. Isothermal Titration Calorimetry Measurements of Riboswitch-Ligand Interactions. Jones CP; Piszczek G; Ferré-D'Amaré AR Methods Mol Biol; 2019; 1964():75-87. PubMed ID: 30929236 [TBL] [Abstract][Full Text] [Related]
13. SAM-VI riboswitch structure and signature for ligand discrimination. Sun A; Gasser C; Li F; Chen H; Mair S; Krasheninina O; Micura R; Ren A Nat Commun; 2019 Dec; 10(1):5728. PubMed ID: 31844059 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches. Matyjasik MM; Batey RT Nucleic Acids Res; 2019 Nov; 47(20):10931-10941. PubMed ID: 31598729 [TBL] [Abstract][Full Text] [Related]
15. ITC analysis of ligand binding to preQ₁ riboswitches. Liberman JA; Bogue JT; Jenkins JL; Salim M; Wedekind JE Methods Enzymol; 2014; 549():435-50. PubMed ID: 25432759 [TBL] [Abstract][Full Text] [Related]
16. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches. Baird NJ; Ferré-D'Amaré AR RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744 [TBL] [Abstract][Full Text] [Related]
17. Structural insights into translation regulation by the THF-II riboswitch. Xu L; Xiao Y; Zhang J; Fang X Nucleic Acids Res; 2023 Jan; 51(2):952-965. PubMed ID: 36620887 [TBL] [Abstract][Full Text] [Related]
18. Probing and perturbing riboswitch folding using a fluorescent base analogue. Hoeher JE; Sande NE; Widom JR Photochem Photobiol; 2024; 100(2):419-433. PubMed ID: 38098287 [TBL] [Abstract][Full Text] [Related]
20. Long-Range Interactions in Riboswitch Control of Gene Expression. Jones CP; Ferré-D'Amaré AR Annu Rev Biophys; 2017 May; 46():455-481. PubMed ID: 28375729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]