These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36610789)

  • 21. [The adenine riboswitch: a new gene regulation mechanism].
    Lemay JF; Lafontaine DA
    Med Sci (Paris); 2006 Dec; 22(12):1053-9. PubMed ID: 17156726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Affinity Binding of N2-Modified Guanine Derivatives Significantly Disrupts the Ligand Binding Pocket of the Guanine Riboswitch.
    Matyjasik MM; Hall SD; Batey RT
    Molecules; 2020 May; 25(10):. PubMed ID: 32414072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.
    Wostenberg C; Ceres P; Polaski JT; Batey RT
    J Mol Biol; 2015 Nov; 427(22):3473-3490. PubMed ID: 26343759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
    Deigan KE; Ferré-D'Amaré AR
    Acc Chem Res; 2011 Dec; 44(12):1329-38. PubMed ID: 21615107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanism of NAD
    Ou L; Zhao X; Wu IJ; Yu Z; Xiong Z; Xia LC; Wang Y; Zhou G; Chen W
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130131. PubMed ID: 38354937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin.
    Polaski JT; Webster SM; Johnson JE; Batey RT
    J Biol Chem; 2017 Jul; 292(28):11650-11658. PubMed ID: 28483920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches.
    Keller H; Weickhmann AK; Bock T; Wöhnert J
    RNA; 2018 Oct; 24(10):1390-1402. PubMed ID: 30006500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch.
    Huang L; Serganov A; Patel DJ
    Mol Cell; 2010 Dec; 40(5):774-86. PubMed ID: 21145485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A variant of guanidine-IV riboswitches exhibits evidence of a distinct ligand specificity.
    Lenkeit F; Eckert I; Sinn M; Hauth F; Hartig JS; Weinberg Z
    RNA Biol; 2023 Jan; 20(1):10-19. PubMed ID: 36548032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold.
    Liberman JA; Salim M; Krucinska J; Wedekind JE
    Nat Chem Biol; 2013 Jun; 9(6):353-5. PubMed ID: 23584677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic ligands for PreQ
    Connelly CM; Numata T; Boer RE; Moon MH; Sinniah RS; Barchi JJ; Ferré-D'Amaré AR; Schneekloth JS
    Nat Commun; 2019 Apr; 10(1):1501. PubMed ID: 30940810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconsidering the
    Xu J; Cotruvo JA
    ACS Bio Med Chem Au; 2022 Aug; 2(4):376-385. PubMed ID: 35996475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity.
    Weinberg Z; Nelson JW; Lünse CE; Sherlock ME; Breaker RR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2077-E2085. PubMed ID: 28265071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global analysis of riboswitches by small-angle X-ray scattering and calorimetry.
    Zhang J; Jones CP; Ferré-D'Amaré AR
    Biochim Biophys Acta; 2014 Oct; 1839(10):1020-1029. PubMed ID: 24769285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptional and translational S-box riboswitches differ in ligand-binding properties.
    Bhagdikar D; Grundy FJ; Henkin TM
    J Biol Chem; 2020 May; 295(20):6849-6860. PubMed ID: 32209653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural features of the ligand-free moaA riboswitch and its ion-dependent folding.
    Amadei F; Reichenbach M; Gallo S; Sigel RKO
    J Inorg Biochem; 2023 May; 242():112153. PubMed ID: 36774787
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Dynamics Simulations of the Aptamer Domain of Guanidinium Ion Binding Riboswitch
    Negi I; Mahmi AS; Seelam Prabhakar P; Sharma P
    J Chem Inf Model; 2021 Oct; 61(10):5243-5255. PubMed ID: 34609872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of orthogonally selective bacterial riboswitches by targeted mutagenesis and in vivo screening.
    Vincent HA; Robinson CJ; Wu MC; Dixon N; Micklefield J
    Methods Mol Biol; 2014; 1111():107-29. PubMed ID: 24549615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.