These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36610853)

  • 1. Mesial or distal to canine: Which is better for the position of closing loops? Analysis of tooth movements based on numerical simulation.
    Jinnai S; Hamanaka R; Komaki H; Kuga D; Yamaguchi R; Tominaga JY; Koga Y; Yoshida N
    Am J Orthod Dentofacial Orthop; 2023 May; 163(5):645-655. PubMed ID: 36610853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of orthodontic tooth movement during activation of an innovative design of closing loop using the finite element method.
    Anh TN; Hamanaka R; Jinnai S; Komaki H; Yamaoka S; Tominaga JY; Koga Y; Yoshida N
    Am J Orthod Dentofacial Orthop; 2021 Aug; 160(2):240-249. PubMed ID: 33933325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal loading conditions for controlled movement of anterior teeth in sliding mechanics.
    Tominaga JY; Tanaka M; Koga Y; Gonzales C; Kobayashi M; Yoshida N
    Angle Orthod; 2009 Nov; 79(6):1102-7. PubMed ID: 19852600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio.
    Kojima Y; Fukui H
    Eur J Orthod; 2012 Feb; 34(1):10-8. PubMed ID: 21135033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing anterior and canine retraction.
    Burstone CJ; Koenig HA
    Am J Orthod; 1976 Jul; 70(1):1-19. PubMed ID: 1066042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical simulation of tooth movement by wire bending.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2006 Oct; 130(4):452-9. PubMed ID: 17045144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical simulation of orthodontic tooth movement produced by a canine retraction spring.
    Kojima Y; Mizuno T; Umemura S; Fukui H
    Dent Mater J; 2007 Jul; 26(4):561-7. PubMed ID: 17886461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element study of controlling factors of anterior intrusion and torque during Temporary Skeletal Anchorage Device (TSAD) dependent en masse retraction without posterior appliances:
    Mo SS; Noh MK; Kim SH; Chung KR; Nelson G
    Angle Orthod; 2020 Mar; 90(2):255-262. PubMed ID: 31589469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of first- and second-order gable bends on the orthodontic load systems produced by T-loop archwires.
    Katona TR; Isikbay SC; Chen J
    Angle Orthod; 2014 Mar; 84(2):350-7. PubMed ID: 23987243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D FEM comparison of lingual and labial orthodontics in en masse retraction.
    Lombardo L; Scuzzo G; Arreghini A; Gorgun O; Ortan YO; Siciliani G
    Prog Orthod; 2014 May; 15(1):38. PubMed ID: 24950350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Group A T-loop for differential moment mechanics: an implant study.
    Martins RP; Buschang PH; Gandini LG
    Am J Orthod Dentofacial Orthop; 2009 Feb; 135(2):182-9. PubMed ID: 19201324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical features of tooth movement from a lingual appliance in comparison with a labial appliance during space closure in sliding mechanics.
    Komaki H; Hamanaka R; Tominaga JY; Jinnai S; Nguyen TA; Kuga D; Koga Y; Yoshida N
    Am J Orthod Dentofacial Orthop; 2022 Sep; 162(3):307-317. PubMed ID: 35422375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the design of preactivated titanium T-loop springs with Loop software.
    Martins RP; Buschang PH; Martins LP; Gandini LG
    Am J Orthod Dentofacial Orthop; 2008 Jul; 134(1):161-6. PubMed ID: 18617117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numeric simulations of en-masse space closure with sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2010 Dec; 138(6):702.e1-6; discussion 702-4. PubMed ID: 21130318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical environment for lower canine T-loop retraction compared to en-masse space closure with a power-arm attached to either the canine bracket or the archwire.
    Jiang F; Roberts WE; Liu Y; Shafiee A; Chen J
    Angle Orthod; 2020 Nov; 90(6):801-810. PubMed ID: 33378514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mandibular anterior intrusion using miniscrews for skeletal anchorage: A 3-dimensional finite element analysis.
    González Del Castillo McGrath M; Araujo-Monsalvo VM; Murayama N; Martínez-Cruz M; Justus-Doczi R; Domínguez-Hernández VM; Ondarza-Rovira R
    Am J Orthod Dentofacial Orthop; 2018 Oct; 154(4):469-476. PubMed ID: 30268257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Gable bend revisited.
    Braun S; Garcia JL
    Am J Orthod Dentofacial Orthop; 2002 Nov; 122(5):523-7. PubMed ID: 12439481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical effects of corticotomy approaches on dentoalveolar structures during canine retraction: A 3-dimensional finite element analysis.
    Yang C; Wang C; Deng F; Fan Y
    Am J Orthod Dentofacial Orthop; 2015 Sep; 148(3):457-65. PubMed ID: 26321344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis].
    Liu DW; Li J; Guo L; Rong QG; Zhou YH
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Feb; 50(1):141-147. PubMed ID: 29483737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics.
    Kojima Y; Kawamura J; Fukui H
    Am J Orthod Dentofacial Orthop; 2012 Oct; 142(4):501-8. PubMed ID: 22999674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.