These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 3661094)

  • 21. Reversal of learned helplessness by imipramine.
    Petty F; Sherman AD
    Commun Psychopharmacol; 1979; 3(5):371-3. PubMed ID: 575771
    [No Abstract]   [Full Text] [Related]  

  • 22. An animal model of depression.
    Takahashi R; Nagayama H; Kido A; Morita T
    Biol Psychiatry; 1974 Oct; 9(2):191-204. PubMed ID: 4473235
    [No Abstract]   [Full Text] [Related]  

  • 23. Evaluation of two genetic animal models in behavioral tests of anxiety and depression.
    Hinojosa FR; Spricigo L; Izídio GS; Brüske GR; Lopes DM; Ramos A
    Behav Brain Res; 2006 Mar; 168(1):127-36. PubMed ID: 16324754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early androgen treatment influences the pattern and amount of locomotion activity differently and sexually differentially in an animal model of ADHD.
    Li JS; Huang YC
    Behav Brain Res; 2006 Nov; 175(1):176-82. PubMed ID: 16979765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactivity to the electric shocks and motor depression as a consequence of inescapable shocking: the effect of acute caffeine treatment.
    Golda V; Petr R
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1985; 28(3-5):181-91. PubMed ID: 3870448
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of rolipram, a phosphodiesterase 4 inhibitor, in combination with imipramine on depressive behavior, CRE-binding activity and BDNF level in learned helplessness rats.
    Itoh T; Tokumura M; Abe K
    Eur J Pharmacol; 2004 Sep; 498(1-3):135-42. PubMed ID: 15363987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peripheral triiodothyronine (T(3)) levels during escapable and inescapable footshock.
    Helmreich DL; Crouch M; Dorr NP; Parfitt DB
    Physiol Behav; 2006 Jan; 87(1):114-9. PubMed ID: 16256154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of nifedipine on the shuttlebox escape deficit induced by inescapable shock in the rat.
    Geoffroy M; Mogilnicka E; Nielsen M; Rafaelsen OJ
    Eur J Pharmacol; 1988 Sep; 154(3):277-83. PubMed ID: 3234482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antidepressants reduce inactivity during both inescapable shock administration and shuttle-box testing.
    Murua VS; Molina VA
    Eur J Pharmacol; 1991 Nov; 204(2):187-92. PubMed ID: 1806386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of inescapable shock on escape performance and discrimination learning in a water escape task.
    Irwin J; Suissa A; Anisman H
    J Exp Psychol Anim Behav Process; 1980 Jan; 6(1):21-40. PubMed ID: 7373225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Development of passivity in the rat: effect of tranquilizers and antidepressants].
    Khonicheva NM; Danchev N
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(2):339-47. PubMed ID: 4040687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats.
    Brenes JC; Padilla M; Fornaguera J
    Behav Brain Res; 2009 Jan; 197(1):125-37. PubMed ID: 18786573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antidepressant-like effects of N-acetyl-L-cysteine in rats.
    Ferreira FR; Biojone C; Joca SR; Guimarães FS
    Behav Pharmacol; 2008 Oct; 19(7):747-50. PubMed ID: 18797252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term behavioral changes after cessation of chronic antidepressant treatment in olfactory bulbectomized rats.
    Breuer ME; Groenink L; Oosting RS; Westenberg HG; Olivier B
    Biol Psychiatry; 2007 Apr; 61(8):990-5. PubMed ID: 17141743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Some behavioral effects of microinjections of noradrenaline and serotonin into the hippocampus of the rat.
    Płaźnik A; Danysz W; Kostowski W
    Physiol Behav; 1983 Nov; 31(5):625-31. PubMed ID: 6320239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroleptic versus antidepressant activity of sulpiride isomers in the rat.
    Montanaro N; Dall'Olio R; Gandolfi O; Vaccheri A
    Adv Biochem Psychopharmacol; 1982; 31():341-6. PubMed ID: 6123224
    [No Abstract]   [Full Text] [Related]  

  • 37. Genetically based animal model of affective disorders: the spontaneously hypertensive rats of Koletsky type.
    Golda V; Petr R
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1988; 31(5):483-98. PubMed ID: 3247581
    [No Abstract]   [Full Text] [Related]  

  • 38. Stress hormones and emotion-regulation in two genetic animal models of depression.
    Braw Y; Malkesman O; Merlender A; Bercovich A; Dagan M; Maayan R; Weizman A; Weller A
    Psychoneuroendocrinology; 2006 Oct; 31(9):1105-16. PubMed ID: 16982157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial.
    Ramos A; Pereira E; Martins GC; Wehrmeister TD; Izídio GS
    Behav Brain Res; 2008 Nov; 193(2):277-88. PubMed ID: 18590774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anxiety-like behaviors in pre-pubertal rats of the Flinders Sensitive Line (FSL) and Wistar-Kyoto (WKY) animal models of depression.
    Braw Y; Malkesman O; Dagan M; Bercovich A; Lavi-Avnon Y; Schroeder M; Overstreet DH; Weller A
    Behav Brain Res; 2006 Feb; 167(2):261-9. PubMed ID: 16271773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.