These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36610941)

  • 21. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols.
    Ito S; Wakamatsu K
    J Dermatol Sci; 2015 Oct; 80(1):18-24. PubMed ID: 26228294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zebrafish as a new model for rhododendrol-induced leukoderma.
    Hayazaki M; Hatano O; Shimabayashi S; Akiyama T; Takemori H; Hamamoto A
    Pigment Cell Melanoma Res; 2021 Nov; 34(6):1029-1038. PubMed ID: 34310852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhododenol Activates Melanocytes and Induces Morphological Alteration at Sub-Cytotoxic Levels.
    Kim M; Lee CS; Lim KM
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31726751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Open-label pilot study to evaluate the effectiveness of topical bimatoprost on rhododendrol-induced refractory leukoderma.
    Fukaya S; Kamata M; Kasanuki T; Yokobori M; Takeoka S; Hayashi K; Tanaka T; Fukuyasu A; Ishikawa T; Ohnishi T; Iimuro S; Tada Y; Watanabe S
    J Dermatol; 2018 Nov; 45(11):1283-1288. PubMed ID: 30156328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of rhododendrol inhibition of NF-κB on melanocytes in the presence of tyrosinase.
    Arase N; Yang L; Tanemura A; Yang F; Suenaga T; Arase H; Katayama I
    J Dermatol Sci; 2016 Aug; 83(2):157-9. PubMed ID: 27174091
    [No Abstract]   [Full Text] [Related]  

  • 26. Biochemical mechanism of acetylsalicylic acid (Aspirin) selective toxicity toward melanoma cell lines.
    Vad NM; Yount G; Moridani MY
    Melanoma Res; 2008 Dec; 18(6):386-99. PubMed ID: 18971789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds.
    Nishimaki-Mogami T; Ito S; Cui H; Akiyama T; Tamehiro N; Adachi R; Wakamatsu K; Ikarashi Y; Kondo K
    J Dermatol Sci; 2022 Nov; 108(2):77-86. PubMed ID: 36567223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A framework to mitigate the risk of chemical leukoderma: Consumer products.
    Bjerke DL; Wu S; Wakamatsu K; Ito S; Wang J; Laughlin T; Hakozaki T
    Regul Toxicol Pharmacol; 2022 Jun; 131():105157. PubMed ID: 35292310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The potent pro-oxidant activity of rhododendrol-eumelanin induces cysteine depletion in B16 melanoma cells.
    Ito S; Okura M; Wakamatsu K; Yamashita T
    Pigment Cell Melanoma Res; 2017 Jan; 30(1):63-67. PubMed ID: 28132436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The potent pro-oxidant activity of rhododendrol-eumelanin is enhanced by ultraviolet A radiation.
    Ito S; Agata M; Okochi K; Wakamatsu K
    Pigment Cell Melanoma Res; 2018 Jul; 31(4):523-528. PubMed ID: 29474003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NAD(P)H dehydrogenase, quinone 1 (NQO1), protects melanin-producing cells from cytotoxicity of rhododendrol.
    Okubo A; Yasuhira S; Shibazaki M; Takahashi K; Akasaka T; Masuda T; Maesawa C
    Pigment Cell Melanoma Res; 2016 May; 29(3):309-16. PubMed ID: 26847926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Melanocyte-specific cytotoxic T lymphocytes in patients with rhododendrol-induced leukoderma.
    Fujiyama T; Ikeya S; Ito T; Tatsuno K; Aoshima M; Kasuya A; Sakabe J; Suzuki T; Tokura Y
    J Dermatol Sci; 2015 Mar; 77(3):190-2. PubMed ID: 25724360
    [No Abstract]   [Full Text] [Related]  

  • 33. Different effects of five depigmentary compounds, rhododendrol, raspberry ketone, monobenzone, rucinol and AP736 on melanogenesis and viability of human epidermal melanocytes.
    Lee CS; Joo YH; Baek HS; Park M; Kim JH; Shin HJ; Park NH; Lee JH; Park YH; Shin SS; Lee HK
    Exp Dermatol; 2016 Jan; 25(1):44-9. PubMed ID: 26440747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leukoderma induced by rhododendrol is different from leukoderma of vitiligo in pathogenesis: A novel comparative morphological study.
    Tsutsumi R; Sugita K; Abe Y; Hozumi Y; Suzuki T; Yamada N; Yoshida Y; Yamamoto O
    J Cutan Pathol; 2019 Feb; 46(2):123-129. PubMed ID: 30456919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical mechanism of acetaminophen (APAP) induced toxicity in melanoma cell lines.
    Vad NM; Yount G; Moore D; Weidanz J; Moridani MY
    J Pharm Sci; 2009 Apr; 98(4):1409-25. PubMed ID: 18759348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide association study identifies CDH13 as a susceptibility gene for rhododendrol-induced leukoderma.
    Okamura K; Abe Y; Naka I; Ohashi J; Yagami A; Matsunaga K; Kobayashi Y; Fukai K; Tanemura A; Katayama I; Masui Y; Ito A; Yamashita T; Nagai H; Nishigori C; Oiso N; Aoyama Y; Araki Y; Saito T; Hayashi M; Hozumi Y; Suzuki T
    Pigment Cell Melanoma Res; 2020 Nov; 33(6):826-833. PubMed ID: 32558222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progression from in vivo validation to in vitro screening in hazard assessment for leukoderma-inducible chemicals.
    Tazaki A; Nishadhi DASM; Li A; Zhang L; Maw TH; Kondo-Ida L; Yanagisawa K; Kato M
    Environ Pollut; 2024 Sep; 356():124508. PubMed ID: 39089942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeoxyArbutin and its derivatives inhibit tyrosinase activity and melanin synthesis without inducing reactive oxygen species or apoptosis.
    Chawla S; Kvalnes K; deLong MA; Wickett R; Manga P; Boissy RE
    J Drugs Dermatol; 2012 Oct; 11(10):e28-34. PubMed ID: 23134995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues.
    Xiao L; Matsubayashi K; Miwa N
    Arch Dermatol Res; 2007 Aug; 299(5-6):245-57. PubMed ID: 17333222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives.
    Miao F; Su MY; Jiang S; Luo LF; Shi Y; Lei TC
    Oxid Med Cell Longev; 2019; 2019():2084805. PubMed ID: 31214276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.