These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36611204)

  • 1. Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity.
    Tamura S; Miyao T; Bajorath J
    J Cheminform; 2023 Jan; 15(1):4. PubMed ID: 36611204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomy of Potency Predictions Focusing on Structural Analogues with Increasing Potency Differences Including Activity Cliffs.
    Janela T; Bajorath J
    J Chem Inf Model; 2023 Nov; 63(22):7032-7044. PubMed ID: 37943257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression.
    Horvath D; Marcou G; Varnek A; Kayastha S; de la Vega de León A; Bajorath J
    J Chem Inf Model; 2016 Sep; 56(9):1631-40. PubMed ID: 27564682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring QSAR models for activity-cliff prediction.
    Dablander M; Hanser T; Lambiotte R; Morris GM
    J Cheminform; 2023 Apr; 15(1):47. PubMed ID: 37069675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of activity cliffs on the basis of images using convolutional neural networks.
    Iqbal J; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2021 Dec; 35(12):1157-1164. PubMed ID: 33740200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale Predictions of Compound Potency with Original and Modified Activity Classes Reveal General Prediction Characteristics and Intrinsic Limitations of Conventional Benchmarking Calculations.
    Janela T; Bajorath J
    Pharmaceuticals (Basel); 2023 Apr; 16(4):. PubMed ID: 37111287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel.
    Tamura S; Jasial S; Miyao T; Funatsu K
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of activity cliffs using support vector machines.
    Heikamp K; Hu X; Yan A; Bajorath J
    J Chem Inf Model; 2012 Sep; 52(9):2354-65. PubMed ID: 22894655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between prediction accuracy and uncertainty in compound potency prediction using deep neural networks and control models.
    Roth JP; Bajorath J
    Sci Rep; 2024 Mar; 14(1):6536. PubMed ID: 38503823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Promiscuity Cliffs Using Machine Learning.
    Blaschke T; Feldmann C; Bajorath J
    Mol Inform; 2021 Jan; 40(1):e2000196. PubMed ID: 32881355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational method for the identification of third generation activity cliffs.
    Stumpfe D; Hu H; Bajorath J
    MethodsX; 2020; 7():100793. PubMed ID: 31993342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in exploring activity cliffs.
    Stumpfe D; Hu H; Bajorath J
    J Comput Aided Mol Des; 2020 Sep; 34(9):929-942. PubMed ID: 32367387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Exploration of Activity Cliffs Containing Privileged Substructures.
    Hu H; Bajorath J
    Mol Pharm; 2020 Mar; 17(3):979-989. PubMed ID: 31978299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring global growth of activity cliff information over time and assessing activity cliff frequencies and distributions.
    Stumpfe D; Bajorath J
    Future Med Chem; 2015 Aug; 7(12):1565-79. PubMed ID: 26334207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions.
    Rodríguez-Pérez R; Bajorath J
    J Comput Aided Mol Des; 2021 Mar; 35(3):285-295. PubMed ID: 33598870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposing the Limitations of Molecular Machine Learning with Activity Cliffs.
    van Tilborg D; Alenicheva A; Grisoni F
    J Chem Inf Model; 2022 Dec; 62(23):5938-5951. PubMed ID: 36456532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity cliff clusters as a source of structure-activity relationship information.
    Dimova D; Stumpfe D; Hu Y; Bajorath J
    Expert Opin Drug Discov; 2015 May; 10(5):441-7. PubMed ID: 25715967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.