These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3661164)

  • 41. Effect of increased perilymphatic pressure on endocochlear potential.
    Nakashima T; Ito A
    Ann Otol Rhinol Laryngol; 1981; 90(3 Pt 1):264-6. PubMed ID: 7271132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of high-frequency sound on electrochemical potential using the single-barrel method in guinea pigs.
    Matsui T; Sugisawa T; Ishida A; Nemoto K; Yamamura K
    ORL J Otorhinolaryngol Relat Spec; 1993; 55(2):84-8. PubMed ID: 8446392
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purinergic modulation of cochlear partition resistance and its effect on the endocochlear potential in the Guinea pig.
    Thorne PR; Muñoz DJ; Housley GD
    J Assoc Res Otolaryngol; 2004 Mar; 5(1):58-65. PubMed ID: 14976588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetic resonance imaging of guinea pig cochlea after vasopressin-induced or surgically induced endolymphatic hydrops.
    Marshall AF; Jewells VL; Kranz P; Lee YZ; Lin W; Zdanski CJ
    Otolaryngol Head Neck Surg; 2010 Feb; 142(2):260-5. PubMed ID: 20115985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isosorbide-Induced Decompression Effect on the Scala Media: Participation of Plasma Osmolality and Plasma Arginine Vasopressin.
    Takeda T; Takeda S; Uehara N; Yanagisawa S; Furukawa T; Nibu KI; Kakigi A
    Otol Neurotol; 2017 Apr; 38(4):599-605. PubMed ID: 28072656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of changes in electrolyte composition of the perilymph on endocochlear potentials].
    Sagalovich BM; Mazo IL
    Fiziol Zh SSSR Im I M Sechenova; 1983 Mar; 69(3):357-61. PubMed ID: 6852291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential.
    Yoshida T; Nin F; Murakami S; Ogata G; Uetsuka S; Choi S; Nakagawa T; Inohara H; Komune S; Kurachi Y; Hibino H
    Pflugers Arch; 2016 Sep; 468(9):1609-19. PubMed ID: 27344659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of L-glutamine, glutaminase and glutamine synthetase on CAP threshold of cochlear nerve of guinea pig.
    Sun YW
    Sci China B; 1991 Feb; 34(2):184-93. PubMed ID: 1673614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea-pig.
    Bosher SK
    J Physiol; 1979 Aug; 293():329-45. PubMed ID: 41092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of vasopressin on smooth muscle cells of guinea-pig mesenteric vessels.
    Karashima T
    Br J Pharmacol; 1981 Apr; 72(4):673-84. PubMed ID: 7284685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of endocochlear potential generation by stria vascularis.
    Salt AN; Melichar I; Thalmann R
    Laryngoscope; 1987 Aug; 97(8 Pt 1):984-91. PubMed ID: 3613802
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of cochlear temperature on the electrical travelling wave pattern in the guinea pig cochlea.
    de Brey HB; Eggermont JJ
    Acta Otolaryngol; 1978; 85(5-6):363-71. PubMed ID: 665210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Differences in furosemide-induced changes of summating potential and endocochlear potential in guinea pigs].
    Hu N; Jiang W; Wang L
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1999 Oct; 34(5):282-5. PubMed ID: 12764825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A; van Maarseveen JT; Scarfone E; Ulfendahl M; Flock B; Flock A
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sendai virus vector-mediated transgene expression in the cochlea in vivo.
    Kanzaki S; Shiotani A; Inoue M; Hasegawa M; Ogawa K
    Audiol Neurootol; 2007; 12(2):119-26. PubMed ID: 17264475
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ATP in endolymph enhances electrically-evoked oto-acoustic emissions from the guinea pig cochlea.
    Kirk DL; Yates GK
    Neurosci Lett; 1998 Jul; 250(3):149-52. PubMed ID: 9708854
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrical potentials of the subtectorial space in the guinea pig cochlea.
    Tanaka Y; Asanuma A; Yanagisawa K; Katsuki Y
    Jpn J Physiol; 1977; 27(5):539-49. PubMed ID: 604584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fine structure of the intracochlear potential field. I. The silent current.
    Zidanic M; Brownell WE
    Biophys J; 1990 Jun; 57(6):1253-68. PubMed ID: 2393707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Effects of asphyxia on endocochlear direct-current potential in guinea pig].
    Liu X; Ren Z; Lü M; Nakashima T
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2006 Apr; 20(7):322-4. PubMed ID: 16780149
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ototoxic effect of potassium canrenoate on the guinea pig cochlea.
    Komune S; Wakizono S; Nakagawa T; Kimituki T; Hisashi K; Uemura T
    Acta Otolaryngol; 1991; 111(4):719-27. PubMed ID: 1950534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.