These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36612)

  • 21. The stoichiometry of H+ pumping in cytochrome oxidase and the mechanism of uncoupling.
    Azzone GF; Zoratti M; Petronilli V; Pietrobon D
    J Inorg Biochem; 1985; 23(3-4):349-56. PubMed ID: 2410567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles.
    Watkins JA; Altazan JD; Elder P; Li CY; Nunez MT; Cui XX; Glass J
    Biochemistry; 1992 Jun; 31(25):5820-30. PubMed ID: 1535218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of electron donation to cytochrome c-555 in Chromatium vinosum from ferrocyanide, tetramethylphenylenediamine and reduced dimethylquinone. Effects of redox potential, pH and salt concentration.
    Hashimoto K; Itoh S; Takamiya K; Nishimura M
    J Biochem; 1982 Apr; 91(4):1111-20. PubMed ID: 6284722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy generation mechanisms in the in vitro-grown Mycobacterium lepraemurium.
    Ishaque M
    Int J Lepr Other Mycobact Dis; 1992 Mar; 60(1):61-70. PubMed ID: 1318345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative damage to mitochondria is mediated by the Ca(2+)-dependent inner-membrane permeability transition.
    Takeyama N; Matsuo N; Tanaka T
    Biochem J; 1993 Sep; 294 ( Pt 3)(Pt 3):719-25. PubMed ID: 7691056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on energy-linked reactions. Energy-linked reduction of oxidized nicotinamide-adenine dinucleotide by succinate in Escherichia coli.
    Sweetman AJ; Griffiths DE
    Biochem J; 1971 Jan; 121(1):117-24. PubMed ID: 4107303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-equilibrium thermodynamic assessment of redox-driven H+ pumps in mitochondria.
    Pietrobon D; Zoratti M; Azzone GF; Stucki JW; Walz D
    Eur J Biochem; 1982 Oct; 127(3):483-94. PubMed ID: 6293816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of acetylcolletotrichin on the mitochondrial respiratory chain.
    Foucher B; Chappell JB; McGivan JD
    Biochem J; 1974 Mar; 138(3):415-23. PubMed ID: 4372992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of the site of ferrocyanide binding involved in the intramolecular electron transfer process to oxidized heme in Scapharca dimeric hemoglobin.
    Colotti G; Verzili D; Boffi A; Chiancone E
    Arch Biochem Biophys; 1994 May; 311(1):103-6. PubMed ID: 8185306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The inhibition of pyruvate and Ls(+)-isocitrate oxidation by succinate oxidation in rat liver mitochondria.
    König T; Nicholls DG; Garland PB
    Biochem J; 1969 Sep; 114(3):589-96. PubMed ID: 4309530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Failure of exogenous NADH and cytochrome c to support energy-dependent swelling of mitochondria.
    Lemeshko VV
    Arch Biochem Biophys; 2001 Apr; 388(1):60-6. PubMed ID: 11361141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flux ratios and pump stoichiometries at sites II and III in liver mitochondria. Effect of slips and leaks.
    Luvisetto S; Conti E; Buso M; Azzone GF
    J Biol Chem; 1991 Jan; 266(2):1034-42. PubMed ID: 1845985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.
    Lehninger AL; Vercesi A; Bababunmi EA
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1690-4. PubMed ID: 25436
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium ion-induced uptakes and transormations of substrates in liver mitochondria.
    Harris EJ; Berent C
    Biochem J; 1969 Dec; 115(4):645-52. PubMed ID: 4311437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial phosphate transport during nutrient stimulation of INS-1E insulinoma cells.
    Quan X; Das R; Xu S; Cline GW; Wiederkehr A; Wollheim CB; Park KS
    Mol Cell Endocrinol; 2013 Dec; 381(1-2):198-209. PubMed ID: 23939247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H+/ATP ratio during ATP hydrolysis by mitochondria: modification of the chemiosmotic theory.
    Brand MD; Lehninger AL
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1955-9. PubMed ID: 17116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. P/O ratios of mitochondrial oxidative phosphorylation.
    Hinkle PC
    Biochim Biophys Acta; 2005 Jan; 1706(1-2):1-11. PubMed ID: 15620362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.