These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36612010)

  • 1. Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning.
    Shinde RK; Alam MS; Hossain MB; Md Imtiaz S; Kim J; Padwal AA; Kim N
    Cancers (Basel); 2022 Dec; 15(1):. PubMed ID: 36612010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization.
    Kumar Lilhore U; Simaiya S; Sharma YK; Kaswan KS; Rao KBVB; Rao VVRM; Baliyan A; Bijalwan A; Alroobaea R
    Sci Rep; 2024 Feb; 14(1):4299. PubMed ID: 38383520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MobileNet-V2: An Enhanced Skin Disease Classification by Attention and Multi-Scale Features.
    Nirupama ; Virupakshappa
    J Imaging Inform Med; 2024 Oct; ():. PubMed ID: 39354294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HI-MViT: A lightweight model for explainable skin disease classification based on modified MobileViT.
    Ding Y; Yi Z; Li M; Long J; Lei S; Guo Y; Fan P; Zuo C; Wang Y
    Digit Health; 2023; 9():20552076231207197. PubMed ID: 37846401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Embedded Feature Selection and CNN for Classification on CCD-INID-V1-A New IoT Dataset.
    Liu Z; Thapa N; Shaver A; Roy K; Siddula M; Yuan X; Yu A
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors.
    Ogundokun RO; Misra S; Akinrotimi AO; Ogul H
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Adaptive Deep Learning Framework for Dynamic Image Classification in the Internet of Things Environment.
    Jameel SM; Hashmani MA; Rehman M; Budiman A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent IoT (IIoT) Device to Identifying Suspected COVID-19 Infections Using Sensor Fusion Algorithm and Real-Time Mask Detection Based on the Enhanced MobileNetV2 Model.
    Shinde RK; Alam MS; Park SG; Park SM; Kim N
    Healthcare (Basel); 2022 Feb; 10(3):. PubMed ID: 35326932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internet of Things-Assisted Smart Skin Cancer Detection Using Metaheuristics with Deep Learning Model.
    Obayya M; Arasi MA; Almalki NS; Alotaibi SS; Al Sadig M; Sayed A
    Cancers (Basel); 2023 Oct; 15(20):. PubMed ID: 37894383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.
    Al-Masni MA; Kim DH; Kim TS
    Comput Methods Programs Biomed; 2020 Jul; 190():105351. PubMed ID: 32028084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images.
    Iqbal I; Younus M; Walayat K; Kakar MU; Ma J
    Comput Med Imaging Graph; 2021 Mar; 88():101843. PubMed ID: 33445062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosted dipper throated optimization algorithm-based Xception neural network for skin cancer diagnosis: An optimal approach.
    Tang X; Rashid Sheykhahmad F
    Heliyon; 2024 Mar; 10(5):e26415. PubMed ID: 38449650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using Deep Learning and Ensemble Stacking of Machine Learning Models.
    Alfi IA; Rahman MM; Shorfuzzaman M; Nazir A
    Diagnostics (Basel); 2022 Mar; 12(3):. PubMed ID: 35328279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusing fine-tuned deep features for skin lesion classification.
    Mahbod A; Schaefer G; Ellinger I; Ecker R; Pitiot A; Wang C
    Comput Med Imaging Graph; 2019 Jan; 71():19-29. PubMed ID: 30458354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning method for classifying mammographic breast density categories.
    Mohamed AA; Berg WA; Peng H; Luo Y; Jankowitz RC; Wu S
    Med Phys; 2018 Jan; 45(1):314-321. PubMed ID: 29159811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanoma segmentation using deep learning with test-time augmentations and conditional random fields.
    Ashraf H; Waris A; Ghafoor MF; Gilani SO; Niazi IK
    Sci Rep; 2022 Mar; 12(1):3948. PubMed ID: 35273282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Detection and Multi-Classification Approach for IoT-Malware Using Random Forest Voting of Fine-Tuning Convolutional Neural Networks.
    Ben Atitallah S; Driss M; Almomani I
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fog Computing Employed Computer Aided Cancer Classification System Using Deep Neural Network in Internet of Things Based Healthcare System.
    Rajan JP; Rajan SE; Martis RJ; Panigrahi BK
    J Med Syst; 2019 Dec; 44(2):34. PubMed ID: 31853735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method of Deep Learning Model Optimization for Image Classification on Edge Device.
    Lee H; Lee N; Lee S
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. InSiNet: a deep convolutional approach to skin cancer detection and segmentation.
    Reis HC; Turk V; Khoshelham K; Kaya S
    Med Biol Eng Comput; 2022 Mar; 60(3):643-662. PubMed ID: 35028864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.