These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36612098)

  • 21. 808 nm Near-Infrared Light-Excited UCNPs@mSiO
    Hu J; Shi J; Gao Y; Yang W; Liu P; Liu Q; He F; Wang C; Li T; Xie R; Zhu J; Yang P
    Int J Nanomedicine; 2019; 14():10009-10021. PubMed ID: 31908456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NIR Photoregulated Theranostic System Based on Hexagonal-Phase Upconverting Nanoparticles for Tumor-Targeted Photodynamic Therapy and Fluorescence Imaging.
    Zhao L; Choi J; Lu Y; Kim SY
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of IR-808 Sensitized Upconversion Nanostructure and MoS
    Xu J; Gulzar A; Liu Y; Bi H; Gai S; Liu B; Yang D; He F; Yang P
    Small; 2017 Sep; 13(36):. PubMed ID: 28737290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield.
    Zhan Q; He S; Qian J; Cheng H; Cai F
    Theranostics; 2013; 3(5):306-16. PubMed ID: 23650478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation.
    Zhan Q; Qian J; Liang H; Somesfalean G; Wang D; He S; Zhang Z; Andersson-Engels S
    ACS Nano; 2011 May; 5(5):3744-57. PubMed ID: 21513307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications.
    Mahata MK; De R; Lee KT
    Biomedicines; 2021 Jun; 9(7):. PubMed ID: 34210059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles.
    Wang M; Mi CC; Wang WX; Liu CH; Wu YF; Xu ZR; Mao CB; Xu SK
    ACS Nano; 2009 Jun; 3(6):1580-6. PubMed ID: 19476317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-Infrared Light Triggered ROS-activated Theranostic Platform based on Ce6-CPT-UCNPs for Simultaneous Fluorescence Imaging and Chemo-Photodynamic Combined Therapy.
    Yue C; Zhang C; Alfranca G; Yang Y; Jiang X; Yang Y; Pan F; de la Fuente JM; Cui D
    Theranostics; 2016; 6(4):456-69. PubMed ID: 26941840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled synthesis of upconverting nanoparticles/CuS yolk-shell nanoparticles for in vitro synergistic photothermal and photodynamic therapy of cancer cells.
    Huang CX; Chen HJ; Li F; Wang WN; Li DD; Yang XZ; Miao ZH; Zha ZB; Lu Y; Qian HS
    J Mater Chem B; 2017 Dec; 5(48):9487-9496. PubMed ID: 32264563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoglycogen Encapsulation of Lanthanide-Based Nanoparticles as an Optical Imaging Platform with Therapeutic Potential.
    Rodrigues EM; Calvert ND; Crawford JC; Liu N; Shuhendler AJ; Hemmer E
    Small; 2022 Jun; 18(24):e2107130. PubMed ID: 35560500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upconversion processes: versatile biological applications and biosafety.
    Gulzar A; Xu J; Yang P; He F; Xu L
    Nanoscale; 2017 Aug; 9(34):12248-12282. PubMed ID: 28829477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combating Concentration Quenching in Upconversion Nanoparticles.
    Chen B; Wang F
    Acc Chem Res; 2020 Feb; 53(2):358-367. PubMed ID: 31633900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles.
    Jin G; He R; Liu Q; Lin M; Dong Y; Li K; Tang BZ; Liu B; Xu F
    Theranostics; 2019; 9(1):246-264. PubMed ID: 30662565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications.
    Zhang Y; Zhu X; Zhang Y
    ACS Nano; 2021 Mar; 15(3):3709-3735. PubMed ID: 33689307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation.
    Tian G; Ren W; Yan L; Jian S; Gu Z; Zhou L; Jin S; Yin W; Li S; Zhao Y
    Small; 2013 Jun; 9(11):1929-38, 1928. PubMed ID: 23239556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intelligent Nanotransducer for Deep-Tumor Hypoxia Modulation and Enhanced Dual-Photosensitizer Photodynamic Therapy.
    Li Y; Du L; Li F; Deng Z; Zeng S
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):14944-14952. PubMed ID: 35317558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NIR-Triggered Generation of Reactive Oxygen Species and Photodynamic Therapy Based on Mesoporous Silica-Coated LiYF
    Ho TH; Yang CH; Jiang ZE; Lin HY; Chen YF; Wang TL
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Versatile Near Infrared Light Triggered Dual-Photosensitizer for Synchronous Bioimaging and Photodynamic Therapy.
    Feng L; He F; Dai Y; Liu B; Yang G; Gai S; Niu N; Lv R; Li C; Yang P
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):12993-13008. PubMed ID: 28368107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy transfer facilitated near infrared fluorescence imaging and photodynamic therapy of tumors.
    Wang Y; Sun X; Chang Y; Zhang H
    Biomater Sci; 2021 Jul; 9(13):4662-4670. PubMed ID: 34008599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.
    Wen X; Wang B; Wu R; Li N; He S; Zhan Q
    Biomed Opt Express; 2016 Jun; 7(6):2174-85. PubMed ID: 27375936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.