These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36612429)

  • 1. Development of Machine Learning Model for Prediction of Demolition Waste Generation Rate of Buildings in Redevelopment Areas.
    Cha GW; Choi SH; Hong WH; Park CW
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Prediction Model for Demolition Waste Generation Using a Random Forest Algorithm Based on Small DataSets.
    Cha GW; Moon HJ; Kim YM; Hong WH; Hwang JH; Park WJ; Kim YC
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32987874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a Prediction Model of Demolition-Waste Generation-Rate via Principal Component Analysis.
    Cha GW; Choi SH; Hong WH; Park CW
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
    Abbasi M; El Hanandeh A
    Waste Manag; 2016 Oct; 56():13-22. PubMed ID: 27297046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Random Forest and Gradient Boosting Machine Models for Predicting Demolition Waste Based on Small Datasets and Categorical Variables.
    Cha GW; Moon HJ; Kim YC
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
    Abunama T; Othman F; Ansari M; El-Shafie A
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based prediction of construction and demolition waste generation in developing countries: a case study.
    Jafari M; Mousavi E
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 39069590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative performance analysis of support vector regression and artificial neural network for prediction of municipal solid waste generation.
    Jassim MS; Coskuner G; Zontul M
    Waste Manag Res; 2022 Feb; 40(2):195-204. PubMed ID: 33818220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.
    Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY
    Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
    Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH
    Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection Systems: Cloud Computing Environments.
    Aldhyani THH; Alkahtani H
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of Major Machine-Learning-Based Path Loss Models for Enclosed Indoor Channels.
    Elmezughi MK; Salih O; Afullo TJ; Duffy KJ
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of 5-day biochemical oxygen demand in the Buriganga River of Bangladesh using novel hybrid machine learning algorithms.
    Nafsin N; Li J
    Water Environ Res; 2022 May; 94(5):e10718. PubMed ID: 35502725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ensemble Learning Based Classification Approach for the Prediction of Household Solid Waste Generation.
    Namoun A; Hussein BR; Tufail A; Alrehaili A; Syed TA; BenRhouma O
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging machine learning tools and algorithms for analysis of fruit fly morphometrics.
    Salifu D; Ibrahim EA; Tonnang HEZ
    Sci Rep; 2022 May; 12(1):7208. PubMed ID: 35505067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the spatial distribution of the dengue vector
    Rahman MS; Pientong C; Zafar S; Ekalaksananan T; Paul RE; Haque U; Rocklöv J; Overgaard HJ
    One Health; 2021 Dec; 13():100358. PubMed ID: 34934797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification.
    Mendez KM; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes.
    Coskuner G; Jassim MS; Zontul M; Karateke S
    Waste Manag Res; 2021 Mar; 39(3):499-507. PubMed ID: 32586206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.