These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 36612564)
1. Evaluation of Pollution Level, Spatial Distribution, and Ecological Effects of Antimony in Soils of Mining Areas: A Review. Zhao S; Shi T; Terada A; Riya S Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612564 [TBL] [Abstract][Full Text] [Related]
2. Priority sources identification and risks assessment of heavy metal(loid)s in agricultural soils of a typical antimony mining watershed. Liu L; Li Y; Gu X; Tulcan RXS; Yan L; Lin C; Pan J J Environ Sci (China); 2025 Jan; 147():153-164. PubMed ID: 39003036 [TBL] [Abstract][Full Text] [Related]
3. Soil microbial responses to simultaneous contamination of antimony and arsenic in the surrounding area of an abandoned antimony smelter in Southwest China. Gong Y; Yang S; Chen S; Zhao S; Ai Y; Huang D; Yang K; Cheng H Environ Int; 2023 Apr; 174():107897. PubMed ID: 37001217 [TBL] [Abstract][Full Text] [Related]
4. Pollution characteristics and environmental availability of toxic elements in soil from an abandoned arsenic-containing mine. Ran H; Deng X; Guo Z; Hu Z; An Y; Xiao X; Yi L; Xu R Chemosphere; 2022 Sep; 303(Pt 3):135189. PubMed ID: 35660392 [TBL] [Abstract][Full Text] [Related]
5. [Characteristics of Pollution and Microbial Community Structure in the Antimony Mining Area of Longnan, Gansu Province]. Zhao QY; Zhang ZM; Tan Z; Li WJ; Pan LB; Guan X; Li JH Huan Jing Ke Xue; 2024 Jul; 45(7):4266-4278. PubMed ID: 39022972 [TBL] [Abstract][Full Text] [Related]
6. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
7. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226 [TBL] [Abstract][Full Text] [Related]
8. Response of soil microbial activities and ammonia oxidation potential to environmental factors in a typical antimony mining area. Wang A; Liu S; Xie J; Ouyang W; He M; Lin C; Liu X J Environ Sci (China); 2023 May; 127():767-779. PubMed ID: 36522104 [TBL] [Abstract][Full Text] [Related]
9. Antimony in soils of SW Poland-an overview of potentially enriched sites. Lewińska K; Karczewska A Environ Monit Assess; 2019 Jan; 191(2):70. PubMed ID: 30643996 [TBL] [Abstract][Full Text] [Related]
10. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. He M Environ Geochem Health; 2007 Jun; 29(3):209-19. PubMed ID: 17351815 [TBL] [Abstract][Full Text] [Related]
11. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Okkenhaug G; Zhu YG; Luo L; Lei M; Li X; Mulder J Environ Pollut; 2011 Oct; 159(10):2427-34. PubMed ID: 21767897 [TBL] [Abstract][Full Text] [Related]
12. Spatial distribution, environmental risks, and sources of potentially toxic elements in soils from a typical abandoned antimony smelting site. Xue S; Korna R; Fan J; Ke W; Lou W; Wang J; Zhu F J Environ Sci (China); 2023 May; 127():780-790. PubMed ID: 36522105 [TBL] [Abstract][Full Text] [Related]
13. Concentration and speciation of antimony and arsenic in soil profiles around the world's largest antimony metallurgical area in China. Yang H; He M; Wang X Environ Geochem Health; 2015 Feb; 37(1):21-33. PubMed ID: 24969304 [TBL] [Abstract][Full Text] [Related]
14. Microbial response to antimony-arsenic distribution and geochemical factors at arable soil around an antimony mining site. Huang H; Lin K; Lei L; Li Y; Li Y; Liang K; Shangguan Y; Xu H Environ Sci Pollut Res Int; 2023 Apr; 30(16):47972-47984. PubMed ID: 36746862 [TBL] [Abstract][Full Text] [Related]
15. Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China. Briki M; Ji H; Li C; Ding H; Gao Y Environ Monit Assess; 2015 Dec; 187(12):767. PubMed ID: 26590987 [TBL] [Abstract][Full Text] [Related]
16. Heavy metal accumulation in the surrounding areas affected by mining in China: Spatial distribution patterns, risk assessment, and influencing factors. Liu H; Qu M; Chen J; Guang X; Zhang J; Liu M; Kang J; Zhao Y; Huang B Sci Total Environ; 2022 Jun; 825():154004. PubMed ID: 35192835 [TBL] [Abstract][Full Text] [Related]
17. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China. Briki M; Zhu Y; Gao Y; Shao M; Ding H; Ji H Environ Monit Assess; 2017 Aug; 189(9):458. PubMed ID: 28823066 [TBL] [Abstract][Full Text] [Related]
18. Pollution characteristics and risk assessment of antimony and arsenic in a typical abandoned antimony smelter. Ren W; Ran Y; Mou Y; Cui Y; Sun B; Yu L; Wan D; Hu D; Zhao P Environ Geochem Health; 2023 Jul; 45(7):5467-5480. PubMed ID: 37099043 [TBL] [Abstract][Full Text] [Related]
19. [Ecological and Health Risk Assessments Based on the Total Amount and Speciation of Heavy Metals in Soils Around Mining Areas]. Wang R; Chen N; Zhang EX Huan Jing Ke Xue; 2022 Mar; 43(3):1546-1557. PubMed ID: 35258219 [TBL] [Abstract][Full Text] [Related]
20. Spatial heterogeneity and source apportionment of soil metal(loid)s in an abandoned lead/zinc smelter. Zhang Y; Li T; Guo Z; Xie H; Hu Z; Ran H; Li C; Jiang Z J Environ Sci (China); 2023 May; 127():519-529. PubMed ID: 36522082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]