These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36613062)
1. Numerical Investigation of Very Low Reynolds Cross Orifice Jet for Personalized Ventilation Applications in Aircraft Cabins. Bode FI; Nastase I Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36613062 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry. Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137 [TBL] [Abstract][Full Text] [Related]
3. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Kini V; Bachmann C; Fontaine A; Deutsch S; Tarbell JM Artif Organs; 2001 Feb; 25(2):136-45. PubMed ID: 11251479 [TBL] [Abstract][Full Text] [Related]
4. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. van Hooff T; Blocken B; van Heijst GJ Indoor Air; 2013 Jun; 23(3):236-49. PubMed ID: 23094648 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow. Kim JT; Kim D; Liberzon A; Chamorro LP J Vis Exp; 2016 Feb; (108):53745. PubMed ID: 26967544 [TBL] [Abstract][Full Text] [Related]
6. The effect of turbulence on transitional flow in the FDA's benchmark nozzle model using large-eddy simulation. Manchester EL; Xu XY Int J Numer Method Biomed Eng; 2020 Oct; 36(10):e3389. PubMed ID: 32738822 [TBL] [Abstract][Full Text] [Related]
7. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
8. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676 [TBL] [Abstract][Full Text] [Related]
9. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500. Janiga G Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349 [TBL] [Abstract][Full Text] [Related]
10. PIV measurements of the flow field just downstream of an oscillating collapsible tube. Bertram CD; Truong NK; Hall SD J Biomech Eng; 2008 Dec; 130(6):061011. PubMed ID: 19045540 [TBL] [Abstract][Full Text] [Related]
11. Effects of adjacent surfaces of different shapes on regurgitant jet sizes: an in vitro study using color Doppler imaging and laser-illuminated dye visualization. Zhang J; Shiota T; Shandas R; Deng YB; Weintraub R; Paik J; Liepmann D; Sahn DJ J Am Coll Cardiol; 1993 Nov; 22(5):1522-9. PubMed ID: 8227814 [TBL] [Abstract][Full Text] [Related]
12. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques. Browne P; Ramuzat A; Saxena R; Yoganathan AP Ann Biomed Eng; 2000 Jan; 28(1):39-47. PubMed ID: 10645786 [TBL] [Abstract][Full Text] [Related]
13. Effect of heart rate on centerline velocities of pulsatile intracardiac jets: an in vitro study with laser Doppler anemometry and pulsed Doppler ultrasound. Cagniot A; Cape EG; Walker PG; Yoganathan AP; Levine RA J Am Soc Echocardiogr; 1992; 5(4):393-404. PubMed ID: 1387317 [TBL] [Abstract][Full Text] [Related]
14. Experimental study on flow and turbulence characteristics of jet impinging on cylinder using three-dimensional Lagrangian particle tracking velocimetry. Kim M; Schanz D; Novara M; Godbersen P; Yeom E; Schröder A Sci Rep; 2023 Jul; 13(1):10929. PubMed ID: 37414852 [TBL] [Abstract][Full Text] [Related]
15. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry. de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906 [TBL] [Abstract][Full Text] [Related]
17. LES modelling of flow in a simple airway model. Luo XY; Hinton JS; Liew TT; Tan KK Med Eng Phys; 2004 Jun; 26(5):403-13. PubMed ID: 15147748 [TBL] [Abstract][Full Text] [Related]
18. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Xu X; Wu J; Weng W; Fu M Biomech Model Mechanobiol; 2020 Oct; 19(5):1679-1695. PubMed ID: 32026145 [TBL] [Abstract][Full Text] [Related]
19. LDA measurements of velocities in a simulated collapsed tube. Bertram CD; Godbole SA J Biomech Eng; 1997 Aug; 119(3):357-63. PubMed ID: 9285350 [TBL] [Abstract][Full Text] [Related]
20. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model. Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]