These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36613548)

  • 1. Expanding the Functionality of an Autoinduction Device for Repression of Gene Expression in
    Silva BF; Corrêa GG; Zocca VFB; Picheli FP; Lins MRCR; Pedrolli DB
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modular autoinduction device for control of gene expression in Bacillus subtilis.
    Corrêa GG; Lins MRDCR; Silva BF; de Paiva GB; Zocca VFB; Ribeiro NV; Picheli FP; Mack M; Pedrolli DB
    Metab Eng; 2020 Sep; 61():326-334. PubMed ID: 32371090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC.
    Mack M; van Loon AP; Hohmann HP
    J Bacteriol; 1998 Feb; 180(4):950-5. PubMed ID: 9473052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoinduction Expression Modules for Regulating Gene Expression in
    Xu K; Tong Y; Li Y; Tao J; Rao S; Li J; Zhou J; Liu S
    ACS Synth Biol; 2022 Dec; 11(12):4220-4225. PubMed ID: 36468943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient, Flexible Autoinduction Expression Systems with Broad Initiation in
    Xu K; Tong Y; Li Y; Tao J; Rao S; Li J; Zhou J; Liu S
    ACS Synth Biol; 2021 Nov; 10(11):3084-3093. PubMed ID: 34699187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product.
    Solovieva IM; Kreneva RA; Errais Lopes L; Perumov DA
    FEMS Microbiol Lett; 2005 Feb; 243(1):51-8. PubMed ID: 15668000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis.
    Shi T; Wang Y; Wang Z; Wang G; Liu D; Fu J; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():101. PubMed ID: 25023436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon.
    Solovieva IM; Kreneva RA; Leak DJ; Perumov DA
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():67-73. PubMed ID: 10206712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo engineering riboflavin production Bacillus subtilis by overexpressing the downstream genes in the purine biosynthesis pathway.
    Liu C; Xia M; Fang H; Xu F; Wang S; Zhang D
    Microb Cell Fact; 2024 May; 23(1):159. PubMed ID: 38822377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dataset for supporting a modular autoinduction device for control of gene expression in
    Correa GG; Lins MRDCR; Silva BF; de Paiva GB; Zocca VFB; Ribeiro NV; Picheli FP; Mack M; Pedrolli DB
    Data Brief; 2020 Aug; 31():105736. PubMed ID: 32509938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis.
    Wu J; Li W; Zhao SG; Qian SH; Wang Z; Zhou MJ; Hu WS; Wang J; Hu LX; Liu Y; Xue ZL
    Microb Cell Fact; 2021 Jun; 20(1):113. PubMed ID: 34098969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.
    Wang X; Wang G; Li X; Fu J; Chen T; Wang Z; Zhao X
    J Biotechnol; 2016 Aug; 231():115-121. PubMed ID: 27234879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis.
    Wang G; Shi T; Chen T; Wang X; Wang Y; Liu D; Guo J; Fu J; Feng L; Wang Z; Zhao X
    Metab Eng; 2018 Jul; 48():138-149. PubMed ID: 29864583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains.
    Wang J; Wang W; Wang H; Yuan F; Xu Z; Yang K; Li Z; Chen Y; Fan K
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4455-4465. PubMed ID: 30968162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis.
    Boumezbeur AH; Bruer M; Stoecklin G; Mack M
    Metab Eng; 2020 Sep; 61():58-68. PubMed ID: 32413407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis.
    Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R
    Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis.
    Yuan P; Cui S; Liu Y; Li J; Lv X; Liu L; Du G
    Enzyme Microb Technol; 2020 Nov; 141():109652. PubMed ID: 33051011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.