These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 36613630)

  • 1. Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications.
    Gomes V; Veloso SRS; Correa-Duarte MA; Ferreira PMT; Castanheira EMS
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic lipogels: driving co-assembly of composites with peptide-based gels for controlled drug release.
    Veloso SRS; Gomes V; Mendes SLF; Hilliou L; Pereira RB; Pereira DM; Coutinho PJG; Ferreira PMT; Correa-Duarte MA; Castanheira EMS
    Soft Matter; 2022 Nov; 18(44):8384-8397. PubMed ID: 36193825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on recent advances in polymer and peptide hydrogels.
    Mondal S; Das S; Nandi AK
    Soft Matter; 2020 Feb; 16(6):1404-1454. PubMed ID: 31984400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review on the advancements of magnetic gels: towards multifunctional magnetic liposome-hydrogel composites for biomedical applications.
    Veloso SRS; Andrade RGD; Castanheira EMS
    Adv Colloid Interface Sci; 2021 Feb; 288():102351. PubMed ID: 33387893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels.
    Veloso SRS; Tiryaki E; Spuch C; Hilliou L; Amorim CO; Amaral VS; Coutinho PJG; Ferreira PMT; Salgueiriño V; Correa-Duarte MA; Castanheira EMS
    Nanoscale; 2022 Apr; 14(14):5488-5500. PubMed ID: 35332904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magneto-responsive hydrogels by self-assembly of low molecular weight peptides and crosslinking with iron oxide nanoparticles.
    Nowak BP; Niehues M; Ravoo BJ
    Soft Matter; 2021 Mar; 17(10):2857-2864. PubMed ID: 33586750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuli-Responsive Properties in Biomedical Applications.
    Falcone N; Kraatz HB
    Chemistry; 2018 Sep; 24(54):14316-14328. PubMed ID: 29667727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides.
    Giraud T; Bouguet-Bonnet S; Stébé MJ; Richaudeau L; Pickaert G; Averlant-Petit MC; Stefan L
    Nanoscale; 2021 Jun; 13(23):10566-10578. PubMed ID: 34100504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of hydrogel networks by metal ions.
    La Manna S; Florio D; Di Natale C; Marasco D
    J Pept Sci; 2023 Aug; 29(8):e3474. PubMed ID: 36579727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent trends in pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators.
    Chassenieux C; Tsitsilianis C
    Soft Matter; 2016 Feb; 12(5):1344-59. PubMed ID: 26781351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites.
    Clasky AJ; Watchorn JD; Chen PZ; Gu FX
    Acta Biomater; 2021 Mar; 122():1-25. PubMed ID: 33352300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Peptide Gels: Influencing Properties by Metal Ion Coordination and Their Wide-Ranging Applications.
    Shao T; Falcone N; Kraatz HB
    ACS Omega; 2020 Jan; 5(3):1312-1317. PubMed ID: 32010800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites.
    Chronopoulou L; Di Nitto A; Papi M; Parolini O; Falconi M; Teti G; Muttini A; Lattanzi W; Palmieri V; Ciasca G; Del Giudice A; Galantini L; Zanoni R; Palocci C
    Colloids Surf B Biointerfaces; 2021 Nov; 207():111989. PubMed ID: 34303114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.
    Qi Z; Schalley CA
    Acc Chem Res; 2014 Jul; 47(7):2222-33. PubMed ID: 24937365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Strain-Stiffening Self-Assembled Hydrogels.
    Wang Y; Xu Z; Lovrak M; le Sage VAA; Zhang K; Guo X; Eelkema R; Mendes E; van Esch JH
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4830-4834. PubMed ID: 31912568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Formulations for Long-Acting Delivery of Therapeutic Peptides.
    Sahandi Zangabad P; Abousalman Rezvani Z; Tong Z; Esser L; Vasani RB; Voelcker NH
    ACS Appl Bio Mater; 2023 Sep; 6(9):3532-3554. PubMed ID: 37294445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalytic Self-Assembly on Magnetic Nanoparticles.
    Conte MP; Sahoo JK; Abul-Haija YM; Lau KHA; Ulijn RV
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3069-3075. PubMed ID: 29282971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clay-Based Nanocomposite Hydrogels for Biomedical Applications: A Review.
    Tipa C; Cidade MT; Borges JP; Costa LC; Silva JC; Soares PIP
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal Self-Assembly of Amphiphilic Peptide Hydrogels and Liposomes Results in Composite Materials with Tunable Release Profiles.
    Swain JWR; Yang CY; Hartgerink JD
    Biomacromolecules; 2023 Nov; 24(11):5018-5026. PubMed ID: 37690094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels.
    Hu J; Zhang G; Liu S
    Chem Soc Rev; 2012 Sep; 41(18):5933-49. PubMed ID: 22695880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.