BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36613752)

  • 1. Role of Thylakoid Lipids in Protochlorophyllide Oxidoreductase Activation: Allosteric Mechanism Elucidated by a Computational Study.
    Liu R; Wang L; Meng Y; Li F; Nie H; Lu H
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of cyanobacterial light-dependent protochlorophyllide oxidoreductase.
    Dong CS; Zhang WL; Wang Q; Li YS; Wang X; Zhang M; Liu L
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8455-8461. PubMed ID: 32234783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms.
    Gabruk M; Mysliwa-Kurdziel B
    Biochem J; 2020 Jun; 477(12):2221-2236. PubMed ID: 32568402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and Experimental Studies on Plant Light-Dependent Protochlorophyllide Oxidoreductase as a Novel Target for Searching Potential Herbicides.
    Liu R; Wang L; Meng Y; Tian Y; Li F; Lu H
    J Agric Food Chem; 2023 Aug; 71(30):11654-11666. PubMed ID: 37467369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MGDG, PG and SQDG regulate the activity of light-dependent protochlorophyllide oxidoreductase.
    Gabruk M; Mysliwa-Kurdziel B; Kruk J
    Biochem J; 2017 Mar; 474(7):1307-1320. PubMed ID: 28188256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic LPOR forms helical lattices that shape membranes for chlorophyll synthesis.
    Nguyen HC; Melo AA; Kruk J; Frost A; Gabruk M
    Nat Plants; 2021 Apr; 7(4):437-444. PubMed ID: 33875834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light dependent protochlorophyllide oxidoreductase: a succinct look.
    Vedalankar P; Tripathy BC
    Physiol Mol Biol Plants; 2024 May; 30(5):719-731. PubMed ID: 38846463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of light-independent protochlorophyllide oxidoreductase.
    Vedalankar P; Tripathy BC
    Protoplasma; 2019 Mar; 256(2):293-312. PubMed ID: 30291443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of prolamellar-body-like ultrastructures in etiolated cyanobacterial cells overexpressing light-dependent protochlorophyllide oxidoreductase in Leptolyngbya boryana.
    Yamamoto H; Kojima-Ando H; Ohki K; Fujita Y
    J Gen Appl Microbiol; 2020 Jun; 66(2):129-139. PubMed ID: 32238622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual role of the active site 'lid' regions of protochlorophyllide oxidoreductase in photocatalysis and plant development.
    Zhang S; Godwin ARF; Taylor A; Hardman SJO; Jowitt TA; Johannissen LO; Hay S; Baldock C; Heyes DJ; Scrutton NS
    FEBS J; 2021 Jan; 288(1):175-189. PubMed ID: 32866986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monogalactosyldiacylglycerol Facilitates Synthesis of Photoactive Protochlorophyllide in Etioplasts.
    Fujii S; Kobayashi K; Nagata N; Masuda T; Wada H
    Plant Physiol; 2017 Aug; 174(4):2183-2198. PubMed ID: 28655777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481.
    Shui J; Saunders E; Needleman R; Nappi M; Cooper J; Hall L; Kehoe D; Stowe-Evans E
    Plant Cell Physiol; 2009 Aug; 50(8):1507-21. PubMed ID: 19561333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The photoenzymatic cycle of NADPH: protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth.
    Schoefs B; Franck F
    Photosynth Res; 2008 Apr; 96(1):15-26. PubMed ID: 17978860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of chlorophyll biosynthesis at the protochlorophyllide reduction step results in the parallel depletion of Photosystem I and Photosystem II in the cyanobacterium Synechocystis PCC 6803.
    Kopečná J; Sobotka R; Komenda J
    Planta; 2013 Feb; 237(2):497-508. PubMed ID: 23011568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis.
    Xu G; Guo H; Zhang D; Chen D; Jiang Z; Lin R
    Photosynth Res; 2015 Dec; 126(2-3):331-40. PubMed ID: 25910753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ternary Complex Formation and Photoactivation of a Photoenzyme Results in Altered Protein Dynamics.
    Stadler AM; Schneidewind J; Zamponi M; Knieps-Grünhagen E; Gholami S; Schwaneberg U; Rivalta I; Garavelli M; Davari MD; Jaeger KE; Krauss U
    J Phys Chem B; 2019 Aug; 123(34):7372-7384. PubMed ID: 31380636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex.
    Schneidewind J; Krause F; Bocola M; Stadler AM; Davari MD; Schwaneberg U; Jaeger KE; Krauss U
    Commun Biol; 2019; 2():351. PubMed ID: 31583285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Light-induced reduction of protochlorophyllide in angiosperms and chloroplast development].
    Myśliwa-Kurdziel B; Strzałka K
    Postepy Biochem; 2010; 56(4):418-26. PubMed ID: 21473046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anionic lipids facilitate membrane development and protochlorophyllide biosynthesis in etioplasts.
    Yoshihara A; Kobayashi K; Nagata N; Fujii S; Wada H; Kobayashi K
    Plant Physiol; 2024 Feb; 194(3):1692-1704. PubMed ID: 37962588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and evolution of the light-dependent protochlorophyllide oxidoreductase (LPOR) genes.
    Yang J; Cheng Q
    Plant Biol (Stuttg); 2004 Sep; 6(5):537-44. PubMed ID: 15375724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.