These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 36613759)
1. Solid-Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System. Matulová M; Duborská E; Matúš P; Urík M Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613759 [TBL] [Abstract][Full Text] [Related]
2. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy. Bassez MP Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301 [TBL] [Abstract][Full Text] [Related]
3. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study. Finck N; Dardenne K J Contam Hydrol; 2016 May; 188():44-51. PubMed ID: 27010738 [TBL] [Abstract][Full Text] [Related]
4. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation. Van Groeningen N; ThomasArrigo LK; Byrne JM; Kappler A; Christl I; Kretzschmar R Environ Sci Process Impacts; 2020 Jun; 22(6):1355-1367. PubMed ID: 32374339 [TBL] [Abstract][Full Text] [Related]
5. Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(ii) hydroxide and green rust. Börsig N; Scheinost AC; Shaw S; Schild D; Neumann T Dalton Trans; 2018 Aug; 47(32):11002-11015. PubMed ID: 30022201 [TBL] [Abstract][Full Text] [Related]
6. Selenium Nanowire Formation by Reacting Selenate with Magnetite. Poulain A; Fernandez-Martinez A; Greneche JM; Prieur D; Scheinost AC; Menguy N; Bureau S; Magnin V; Findling N; Drnec J; Martens I; Mirolo M; Charlet L Environ Sci Technol; 2022 Oct; 56(20):14817-14827. PubMed ID: 36184803 [TBL] [Abstract][Full Text] [Related]
7. Biogeochemical Mobility of Contaminants from a Replica Radioactive Waste Trench in Response to Rainfall-Induced Redox Oscillations. Kinsela AS; Bligh MW; Vázquez-Campos X; Sun Y; Wilkins MR; Comarmond MJ; Rowling B; Payne TE; Waite TD Environ Sci Technol; 2021 Jul; 55(13):8793-8805. PubMed ID: 34110792 [TBL] [Abstract][Full Text] [Related]
8. Long-term stability of the Fe(III)-As(V) coprecipitates: Effects of neutralization mode and the addition of Fe(II) on arsenic retention. Zhang D; Wang S; Gomez MA; Wang Y; Jia Y Chemosphere; 2019 Dec; 237():124503. PubMed ID: 31398610 [TBL] [Abstract][Full Text] [Related]
9. X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by FeII-bearing minerals. Scheinost AC; Kirsch R; Banerjee D; Fernandez-Martinez A; Zaenker H; Funke H; Charlet L J Contam Hydrol; 2008 Dec; 102(3-4):228-45. PubMed ID: 18976832 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of bioreduced iron-bearing clay mineral triggers arsenic immobilization. Zhao Z; Yuan Q; Meng Y; Luan F Environ Sci Pollut Res Int; 2022 Jun; 29(29):44874-44882. PubMed ID: 35138538 [TBL] [Abstract][Full Text] [Related]
11. Redox Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites: Role of Structural and Adsorbed Fe(II). Ilgen AG; Kruichak JN; Artyushkova K; Newville MG; Sun C Environ Sci Technol; 2017 Oct; 51(19):11105-11114. PubMed ID: 28850224 [TBL] [Abstract][Full Text] [Related]
12. Water near its Supercritical Point and at Alkaline pH for the Production of Ferric Oxides and Silicates in Anoxic Conditions. A New Hypothesis for the Synthesis of Minerals Observed in Banded Iron Formations and for the Related Geobiotropic Chemistry inside Fluid Inclusions. Bassez MP Orig Life Evol Biosph; 2018 Sep; 48(3):289-320. PubMed ID: 30091010 [TBL] [Abstract][Full Text] [Related]
14. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption. Latta DE; Bachman JE; Scherer MM Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051 [TBL] [Abstract][Full Text] [Related]
15. Anoxic oxidation of As(III) during Fe(II)-induced goethite recrystallization: Evidence and importance of Fe(IV) intermediate. Hua J; Fei YH; Feng C; Liu C; Liang S; Wang SL; Wu F J Hazard Mater; 2022 Jan; 421():126806. PubMed ID: 34388930 [TBL] [Abstract][Full Text] [Related]
16. Redox Interaction between Selenite and Mackinawite in Cement Pore Water. Wang K; Martinez AF; Simonelli L; Madé B; Hénocq P; Ma B; Charlet L Environ Sci Technol; 2022 May; 56(9):5602-5610. PubMed ID: 35417136 [TBL] [Abstract][Full Text] [Related]
17. Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions. Baik MH; Lee SY; Jeong J J Environ Radioact; 2013 Dec; 126():209-15. PubMed ID: 24056049 [TBL] [Abstract][Full Text] [Related]
18. Facet-dependent U(VI) removal of hematite with confined ferrous ions. Zhang J; Liu S; Lv Z; Liu Y; Gao F; Li K; Tan X; Ye X; Fang M Environ Sci Pollut Res Int; 2023 Oct; 30(50):109077-109086. PubMed ID: 37759062 [TBL] [Abstract][Full Text] [Related]
19. Influence of Fe(II) on the Se(IV) sorption under oxic/anoxic conditions using bentonite. He J; Shi Y; Yang X; Zhou W; Li Y; Liu C Chemosphere; 2018 Feb; 193():376-384. PubMed ID: 29149714 [No Abstract] [Full Text] [Related]
20. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite. Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]