BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 36613854)

  • 1. Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments.
    Kolesnik OV; Rozhko TV; Kudryasheva NS
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humic Substances Mitigate the Impact of Tritium on Luminous Marine Bacteria. Involvement of Reactive Oxygen Species.
    Rozhko TV; Kolesnik OV; Badun GA; Stom DI; Kudryasheva NS
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.
    Kudryasheva NS; Rozhko TV
    J Environ Radioact; 2015 Apr; 142():68-77. PubMed ID: 25644753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Cellular and Enzymatic Bioluminescent Assay Systems to Study Low-Dose Effects of Thorium.
    Kolesnik OV; Rozhko TV; Lapina MA; Solovyev VS; Sachkova AS; Kudryasheva NS
    Bioengineering (Basel); 2021 Nov; 8(12):. PubMed ID: 34940347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic Responses to Low-Intensity Radiation of Tritium.
    Rozhko TV; Nemtseva EV; Gardt MV; Raikov AV; Lisitsa AE; Badun GA; Kudryasheva NS
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of biological activation by tritium.
    Rozhko TV; Badun GA; Razzhivina IA; Guseynov OA; Guseynova VE; Kudryasheva NS
    J Environ Radioact; 2016 Jun; 157():131-5. PubMed ID: 27035890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Oxygen Species and low-dose effects of tritium on bacterial cells.
    Rozhko TV; Nogovitsyna EI; Badun GA; Lukyanchuk AN; Kudryasheva NS
    J Environ Radioact; 2019 Nov; 208-209():106035. PubMed ID: 31499317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure of luminous marine bacteria to low-dose gamma-radiation.
    Kudryasheva NS; Petrova AS; Dementyev DV; Bondar AA
    J Environ Radioact; 2017 Apr; 169-170():64-69. PubMed ID: 28086187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tritium on luminous marine bacteria and enzyme reactions.
    Selivanova MA; Mogilnaya OA; Badun GA; Vydryakova GA; Kuznetsov AM; Kudryasheva NS
    J Environ Radioact; 2013 Jun; 120():19-25. PubMed ID: 23410594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of a Bacterial Bioluminescent Assay to Monitor Bioeffects of Gold Nanoparticles.
    Yehia MR; Smolyarova TE; Shabanov AV; Sushko ES; Badun GA; Kudryasheva NS
    Bioengineering (Basel); 2022 Feb; 9(2):. PubMed ID: 35200414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is bacterial luminescence response to low-dose radiation associated with mutagenicity?
    Rozhko TV; Guseynov OA; Guseynova VE; Bondar AA; Devyatlovskaya AN; Kudryasheva NS
    J Environ Radioact; 2017 Oct; 177():261-265. PubMed ID: 28728127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detoxification of AM-241 solutions by humic substances: bioluminescent monitoring.
    Rozhko T; Bondareva L; Mogilnaya O; Vydryakova G; Bolsunovsky A; Stom D; Kudryasheva N
    Anal Bioanal Chem; 2011 Apr; 400(2):329-34. PubMed ID: 21174201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of Low-Intensity Exposures via Luminescent Bioassays of Different Complexity: Cells, Enzyme Reactions, and Fluorescent Proteins.
    Kudryasheva NS; Kovel ES
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31509958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of americium-241 on luminous bacteria. Role of peroxides.
    Alexandrova M; Rozhko T; Vydryakova G; Kudryasheva N
    J Environ Radioact; 2011 Apr; 102(4):407-11. PubMed ID: 21388726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotoxic and reprotoxic effects of tritium and external gamma irradiation on aquatic animals.
    Adam-Guillermin C; Pereira S; Della-Vedova C; Hinton T; Garnier-Laplace J
    Rev Environ Contam Toxicol; 2012; 220():67-103. PubMed ID: 22610297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollutant toxicity and detoxification by humic substances: mechanisms and quantitative assessment via luminescent biomonitoring.
    Kudryasheva NS; Tarasova AS
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):155-67. PubMed ID: 25146119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA.
    Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G
    J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of luciferase and NADH:FMN oxidoreductase concentrations on the light kinetics of bacterial bioluminescence.
    Lavi J; Raunio R; Malkov Y; Lövgren T
    Biochem Biophys Res Commun; 1983 Feb; 111(1):266-73. PubMed ID: 6830592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of tririum on growth and bioluminescence of P. phosphoreum bacteria].
    Aleksandrova MA; Rozhko TV; Badun GA; Bondareva LG; Vydriakova GA; Kudriashova NS
    Radiats Biol Radioecol; 2010; 50(6):613-8. PubMed ID: 21434387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quantitative detection of NADH by in vitro bacterial luciferase bioluminescent].
    Mei C; Wang J; Lin H; Wang J
    Wei Sheng Wu Xue Bao; 2009 Sep; 49(9):1223-8. PubMed ID: 20030062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.