These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36613884)
41. n-n ZnO-Ag Pirhashemi M; Elhag S; Adam RE; Habibi-Yangjeh A; Liu X; Willander M; Nur O RSC Adv; 2019 Mar; 9(14):7992-8001. PubMed ID: 35521157 [TBL] [Abstract][Full Text] [Related]
42. Surface Modification of ZnO Nanotubes by Ag and Au Coatings of Variable Thickness: Systematic Analysis of the Factors Leading to UV Light Emission Enhancement. Włodarski M; Nowak MP; Putkonen M; Nyga P; Norek M ACS Omega; 2024 Jan; 9(1):1670-1682. PubMed ID: 38222608 [TBL] [Abstract][Full Text] [Related]
43. ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. Li JM; Cheng HY; Chiu YH; Hsu YJ Nanoscale; 2016 Aug; 8(34):15720-9. PubMed ID: 27527337 [TBL] [Abstract][Full Text] [Related]
44. N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure. Wang M; Ren F; Zhou J; Cai G; Cai L; Hu Y; Wang D; Liu Y; Guo L; Shen S Sci Rep; 2015 Aug; 5():12925. PubMed ID: 26262752 [TBL] [Abstract][Full Text] [Related]
45. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922 [TBL] [Abstract][Full Text] [Related]
46. Direct Observation of Plasmon-Induced Interfacial Charge Separation in Metal/Semiconductor Hybrid Nanostructures by Measuring Surface Potentials. Lee SH; Lee SW; Oh T; Petrosko SH; Mirkin CA; Jang JW Nano Lett; 2018 Jan; 18(1):109-116. PubMed ID: 29140713 [TBL] [Abstract][Full Text] [Related]
47. Rapid and Efficient Self-Assembly of Au@ZnO Core-Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation. Sun Y; Xu B; Shen Q; Hang L; Men D; Zhang T; Li H; Li C; Li Y ACS Appl Mater Interfaces; 2017 Sep; 9(37):31897-31906. PubMed ID: 28853855 [TBL] [Abstract][Full Text] [Related]
48. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications. Lee H; Park Y; Song K; Park JY Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156 [TBL] [Abstract][Full Text] [Related]
49. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity. Sun L; Zhao D; Song Z; Shan C; Zhang Z; Li B; Shen D J Colloid Interface Sci; 2011 Nov; 363(1):175-81. PubMed ID: 21816407 [TBL] [Abstract][Full Text] [Related]
50. Au nanoparticles embedded in BiVO Tang G; Li H; Cheng C Nanotechnology; 2019 Nov; 30(44):445402. PubMed ID: 31370056 [TBL] [Abstract][Full Text] [Related]
51. Hematite coated, conductive Y doped ZnO nanorods for high efficiency solar water splitting. Commandeur D; McGuckin J; Chen Q Nanotechnology; 2020 Apr; 31(26):265403. PubMed ID: 32101177 [TBL] [Abstract][Full Text] [Related]
52. Localized surface plasmon-enhanced photoelectrochemical water oxidation by inorganic/organic nano-heterostructure comprising NDI-based D-A-D type small molecule. Sanke DM; Ghosh NG; Das S; Karmakar HS; Sarkar A; Zade SS J Colloid Interface Sci; 2021 Nov; 601():803-815. PubMed ID: 34102408 [TBL] [Abstract][Full Text] [Related]
53. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process. Bora T; Kyaw HH; Sarkar S; Pal SK; Dutta J Beilstein J Nanotechnol; 2011; 2():681-90. PubMed ID: 22043457 [TBL] [Abstract][Full Text] [Related]
54. The potential application of an efficient MOF-derived visible light-responsive photocatalyst based on Au/C/ZnO for tetracycline antibiotic photodegradation. Zhang Y; Zhang S Environ Sci Pollut Res Int; 2023 Mar; 30(12):33587-33597. PubMed ID: 36481858 [TBL] [Abstract][Full Text] [Related]
55. Synergistic Effect of Plasmonic Gold Nanoparticles Decorated Carbon Nanotubes in Quantum Dots/TiO Selopal GS; Mohammadnezhad M; Besteiro LV; Cavuslar O; Liu J; Zhang H; Navarro-Pardo F; Liu G; Wang M; Durmusoglu EG; Acar HY; Sun S; Zhao H; Wang ZM; Rosei F Adv Sci (Weinh); 2020 Oct; 7(20):2001864. PubMed ID: 33101875 [TBL] [Abstract][Full Text] [Related]
56. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Pu YC; Wang G; Chang KD; Ling Y; Lin YK; Fitzmorris BC; Liu CM; Lu X; Tong Y; Zhang JZ; Hsu YJ; Li Y Nano Lett; 2013 Aug; 13(8):3817-23. PubMed ID: 23899318 [TBL] [Abstract][Full Text] [Related]
57. Earth abundant transition metal ferrite nanoparticles anchored ZnO nanorods as efficient and stable photoanodes for solar water splitting. Maity D; Karmakar K; Mandal D; Pal D; Khan GG; Mandal K Nanotechnology; 2020 Nov; 31(47):475403. PubMed ID: 32886646 [TBL] [Abstract][Full Text] [Related]
58. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils. Qiao Y; Li J; Li H; Fang H; Fan D; Wang W Biosens Bioelectron; 2016 Dec; 86():315-320. PubMed ID: 27387262 [TBL] [Abstract][Full Text] [Related]
59. Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications. Nandanapalli KR; Mudusu D; Yu JS; Lee S J Colloid Interface Sci; 2020 Jan; 558():9-20. PubMed ID: 31580955 [TBL] [Abstract][Full Text] [Related]
60. Hierarchical PANI/ZnO nanocomposite: synthesis and synergistic effect of shape-selective ZnO nanoflowers and polyaniline sensitization for efficient photocatalytic dye degradation and photoelectrochemical water splitting. Sharma S; Kumar D; Khare N Nanotechnology; 2020 Nov; 31(46):465402. PubMed ID: 32764193 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]