These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36613897)
21. Analysis of the role of Bacillus subtilis σ(M) in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Luo Y; Helmann JD Mol Microbiol; 2012 Feb; 83(3):623-39. PubMed ID: 22211522 [TBL] [Abstract][Full Text] [Related]
22. Structural analysis of the diadenylate cyclase reaction of DNA-integrity scanning protein A (DisA) and its inhibition by 3'-dATP. Müller M; Deimling T; Hopfner KP; Witte G Biochem J; 2015 Aug; 469(3):367-74. PubMed ID: 26014055 [TBL] [Abstract][Full Text] [Related]
23. Phenotypes Associated with the Essential Diadenylate Cyclase CdaA and Its Potential Regulator CdaR in the Human Pathogen Listeria monocytogenes. Rismondo J; Gibhardt J; Rosenberg J; Kaever V; Halbedel S; Commichau FM J Bacteriol; 2016 Feb; 198(3):416-26. PubMed ID: 26527648 [TBL] [Abstract][Full Text] [Related]
25. Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Agostoni M; Logan-Jackson AR; Heinz ER; Severin GB; Bruger EL; Waters CM; Montgomery BL Front Microbiol; 2018; 9():1121. PubMed ID: 29896182 [TBL] [Abstract][Full Text] [Related]
27. Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis. Krüger L; Herzberg C; Rath H; Pedreira T; Ischebeck T; Poehlein A; Gundlach J; Daniel R; Völker U; Mäder U; Stülke J PLoS Genet; 2021 Jan; 17(1):e1009092. PubMed ID: 33481774 [TBL] [Abstract][Full Text] [Related]
28. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis. Castro-Cerritos KV; Yasbin RE; Robleto EA; Pedraza-Reyes M J Bacteriol; 2017 Feb; 199(4):. PubMed ID: 27920297 [TBL] [Abstract][Full Text] [Related]
29. Sustained sensing in potassium homeostasis: Cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity. Gundlach J; Krüger L; Herzberg C; Turdiev A; Poehlein A; Tascón I; Weiss M; Hertel D; Daniel R; Hänelt I; Lee VT; Stülke J J Biol Chem; 2019 Jun; 294(24):9605-9614. PubMed ID: 31061098 [TBL] [Abstract][Full Text] [Related]
30. Activity and in vivo dynamics of Bacillus subtilis DisA are affected by RadA/Sms and by Holliday junction-processing proteins. Gándara C; de Lucena DKC; Torres R; Serrano E; Altenburger S; Graumann PL; Alonso JC DNA Repair (Amst); 2017 Jul; 55():17-30. PubMed ID: 28511132 [TBL] [Abstract][Full Text] [Related]
31. Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. Commichau FM; Heidemann JL; Ficner R; Stülke J J Bacteriol; 2019 Jan; 201(1):. PubMed ID: 30224435 [TBL] [Abstract][Full Text] [Related]
32. Regulatory mechanisms of c-di-AMP synthase from Mycobacterium smegmatis revealed by a structure: Function analysis. Gautam S; Mahapa A; Yeramala L; Gandhi A; Krishnan S; Kutti R V; Chatterji D Protein Sci; 2023 Mar; 32(3):e4568. PubMed ID: 36660887 [TBL] [Abstract][Full Text] [Related]
33. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Witte G; Hartung S; Büttner K; Hopfner KP Mol Cell; 2008 Apr; 30(2):167-78. PubMed ID: 18439896 [TBL] [Abstract][Full Text] [Related]
34. DarA-the central processing unit for the integration of osmotic with potassium and amino acid homeostasis in Warneke R; Herzberg C; Weiß M; Schramm T; Hertel D; Link H; Stülke J J Bacteriol; 2024 Jul; 206(7):e0019024. PubMed ID: 38832794 [TBL] [Abstract][Full Text] [Related]
35. The c-di-AMP signaling system influences stress tolerance and biofilm formation of Streptococcus mitis. Rørvik GH; Naemi AO; Edvardsen PKT; Simm R Microbiologyopen; 2021 Aug; 10(4):e1203. PubMed ID: 34459556 [TBL] [Abstract][Full Text] [Related]
36. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria. Fahmi T; Port GC; Cho KH Genes (Basel); 2017 Aug; 8(8):. PubMed ID: 28783096 [TBL] [Abstract][Full Text] [Related]
37. Crystal structures of the c-di-AMP-synthesizing enzyme CdaA. Heidemann JL; Neumann P; Dickmanns A; Ficner R J Biol Chem; 2019 Jul; 294(27):10463-10470. PubMed ID: 31118276 [TBL] [Abstract][Full Text] [Related]
38. A network of acetyl phosphate-dependent modification modulates c-di-AMP homeostasis in Fu Y; Zhao L-C; Shen J-L; Zhou S-Y; Yin B-C; Ye B-C; You D mBio; 2024 Aug; 15(8):e0141124. PubMed ID: 38980040 [TBL] [Abstract][Full Text] [Related]
39. The many roles of cyclic di-AMP to control the physiology of Herzberg C; Meißner J; Warneke R; Stülke J Microlife; 2023; 4():uqad043. PubMed ID: 37954098 [TBL] [Abstract][Full Text] [Related]
40. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. Bai Y; Yang J; Zhou X; Ding X; Eisele LE; Bai G PLoS One; 2012; 7(4):e35206. PubMed ID: 22529992 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]