BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 36613926)

  • 1. The γ-Core Motif Peptides of Plant AMPs as Novel Antimicrobials for Medicine and Agriculture.
    Slezina MP; Istomina EA; Korostyleva TV; Odintsova TI
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens.
    Slezina MP; Istomina EA; Kulakovskaya EV; Korostyleva TV; Odintsova TI
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications.
    Sharma P; Kaur J; Sharma G; Kashyap P
    J Food Biochem; 2022 Oct; 46(10):e14348. PubMed ID: 35945701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship.
    Tian T; Xie W; Liu L; Fan S; Zhang H; Qin Z; Yang C
    Crit Rev Food Sci Nutr; 2023; 63(21):5430-5445. PubMed ID: 34955061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Functions and Applications of Antimicrobial Peptides.
    Wang L; Qu L; Lin S; Yang Q; Zhang X; Jin L; Dong H; Sun D
    Curr Protein Pept Sci; 2022; 23(4):226-247. PubMed ID: 35598243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Peptides - Small but Mighty Weapons for Plants to Fight Phytopathogens.
    Das K; Datta K; Karmakar S; Datta SK
    Protein Pept Lett; 2019; 26(10):720-742. PubMed ID: 31215363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide Design Principles for Antimicrobial Applications.
    Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C
    J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials.
    Ong ZY; Wiradharma N; Yang YY
    Adv Drug Deliv Rev; 2014 Nov; 78():28-45. PubMed ID: 25453271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications.
    Thakur A; Sharma A; Alajangi HK; Jaiswal PK; Lim YB; Singh G; Barnwal RP
    Int J Biol Macromol; 2022 Oct; 218():135-156. PubMed ID: 35868409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health.
    Luo X; Wu W; Feng L; Treves H; Ren M
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal Peptides and Proteins to Control Toxigenic Fungi and Mycotoxin Biosynthesis.
    Martínez-Culebras PV; Gandía M; Garrigues S; Marcos JF; Manzanares P
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy.
    Srivastava S; Dashora K; Ameta KL; Singh NP; El-Enshasy HA; Pagano MC; Hesham AE; Sharma GD; Sharma M; Bhargava A
    Phytother Res; 2021 Jan; 35(1):256-277. PubMed ID: 32940412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and Optimization of a Broad-Spectrum Synthetic Antimicrobial Peptide, Ap920-WI, from
    Zhao L; Islam MS; Song P; Zhu L; Dong W
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Approach Towards Structure Based Antimicrobial Peptide Design for Use in Development of Transgenic Plants: A Strategy for Plant Disease Management.
    Ilyas H; Datta A; Bhunia A
    Curr Med Chem; 2017; 24(13):1350-1364. PubMed ID: 28093983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the Role of Antimicrobial Peptides in Insects.
    Stączek S; Cytryńska M; Zdybicka-Barabas A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Antimicrobial peptides: mode of action and perspectives of practical application].
    Okorochenkov SA; Zheltukhina GA; Nebol'sin VE
    Biomed Khim; 2012; 58(2):131-43. PubMed ID: 22724354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance.
    Chou S; Shao C; Wang J; Shan A; Xu L; Dong N; Li Z
    Acta Biomater; 2016 Jan; 30():78-93. PubMed ID: 26546414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial peptides: modes of mechanism, modulation of defense responses.
    Rahnamaeian M
    Plant Signal Behav; 2011 Sep; 6(9):1325-32. PubMed ID: 21847025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.