These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36613993)

  • 1. CRISPR/Cas9-Mediated Mutagenesis of
    Shin YH; Park YD
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-Mediated Editing of
    Shin YH; Lee HM; Park YD
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and Characterization of
    Kim NS; Yu J; Bae S; Kim HS; Park S; Lee K; Lee SI; Kim JA
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Function Analysis of the
    Shin NR; Shin YH; Kim HS; Park YD
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen Signaling Genes and
    Jung H; Lee A; Jo SH; Park HJ; Jung WY; Kim HS; Lee HJ; Jeong SG; Kim YS; Cho HS
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Late-bolting transgenic Chinese cabbage obtained by RNA interference technique.
    Xia GQ; Zhu JY; He QW; Zhao SY; Wang CH
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Oct; 33(5):411-6. PubMed ID: 17960044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of pseudomolecule sequences of Brassica rapa ssp. pekinensis inbred line CT001 and analysis of spontaneous mutations derived via sexual propagation.
    Park JS; Park JH; Park YD
    PLoS One; 2019; 14(9):e0222283. PubMed ID: 31498838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage (Brassica rapa L.) during vernalization.
    Dai Y; Sun X; Wang C; Li F; Zhang S; Zhang H; Li G; Yuan L; Chen G; Sun R; Zhang S
    BMC Genomics; 2021 Apr; 22(1):236. PubMed ID: 33823810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa).
    Fu W; Huang S; Gao Y; Zhang M; Qu G; Wang N; Liu Z; Feng H
    Theor Appl Genet; 2020 Oct; 133(10):2937-2948. PubMed ID: 32656681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize.
    Lee K; Zhu H; Yang B; Wang K
    Methods Mol Biol; 2019; 1917():121-143. PubMed ID: 30610633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single amino acid residue substitution in BraA04g017190.3C, a histone methyltransferase, results in premature bolting in Chinese cabbage (Brassica rapa L. ssp. Pekinensis).
    Tan C; Ren J; Wang L; Ye X; Fu W; Zhang J; Qi M; Feng H; Liu Z
    BMC Plant Biol; 2021 Aug; 21(1):373. PubMed ID: 34388969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-Mediated
    Lee YR; Ko KS; Lee HE; Lee ES; Han K; Yoo JY; Vu BN; Choi HN; Lee YN; Hong JC; Lee KO; Kim DS
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Transcriptome Analysis of Early- and Late-Bolting Traits in Chinese Cabbage (
    Wei X; Rahim MA; Zhao Y; Yang S; Wang Z; Su H; Li L; Niu L; Harun-Ur-Rashid M; Yuan Y; Zhang X
    Front Genet; 2021; 12():590830. PubMed ID: 33747036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ANALYSIS OF GENOMIC DNA METHYLATION AND GENE EXPRESSION IN CHINESE CABBAGE (Brassica rapa L. ssp. pekinensis) AFTER CONTINUOUS SEEDLING BREEDING.
    Tao L; Wang XL; Guo MH; Zhang YW
    Genetika; 2015 Aug; 51(8):905-14. PubMed ID: 26601490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding.
    González MN; Massa GA; Andersson M; Storani L; Olsson N; Décima Oneto CA; Hofvander P; Feingold SE
    Methods Mol Biol; 2023; 2653():333-361. PubMed ID: 36995636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of late-bolting plants by CRISPR/Cas9-mediated genome editing from mesophyll protoplasts of lettuce.
    Choi SH; Ahn WS; Jie EY; Cho HS; Kim SW
    Plant Cell Rep; 2022 Jul; 41(7):1627-1630. PubMed ID: 35578138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-mediated mutagenesis of homologous genes in Chinese kale.
    Sun B; Zheng A; Jiang M; Xue S; Yuan Q; Jiang L; Chen Q; Li M; Wang Y; Zhang Y; Luo Y; Wang X; Zhang F; Tang H
    Sci Rep; 2018 Nov; 8(1):16786. PubMed ID: 30429497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Endonuclease Cas9-Mediated Homology-Independent Integration for Generating Quality Control Materials for Clinical Molecular Genetic Testing.
    Lin G; Zhang K; Peng R; Han Y; Xie J; Li J
    J Mol Diagn; 2018 May; 20(3):373-380. PubMed ID: 29680088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Based Gene Editing in Soybean.
    Bao A; Tran LP; Cao D
    Methods Mol Biol; 2020; 2107():349-364. PubMed ID: 31893458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.