These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 36614102)
1. Unbalance between Pyridine Nucleotide Cofactors in The SOD1 Deficient Yeast Kwolek-Mirek M; Bednarska S; Dubicka-Lisowska A; Maslanka R; Zadrag-Tecza R; Kaszycki P Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614102 [TBL] [Abstract][Full Text] [Related]
2. Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae. Liu ZL; Huang X; Zhou Q; Xu J Appl Microbiol Biotechnol; 2019 Jul; 103(14):5781-5796. PubMed ID: 31139900 [TBL] [Abstract][Full Text] [Related]
3. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428 [TBL] [Abstract][Full Text] [Related]
4. A novel test for identifying genes involved in aldehyde detoxification in the yeast. Increased sensitivity of superoxide-deficient yeast to aldehydes and their metabolic precursors. Biliński T; Kwolek M; Sas E; Krynicka M; Koziol S; Owsiak-Teleon A; Krzepilko A; Bartosz G Biofactors; 2005; 24(1-4):59-65. PubMed ID: 16403964 [TBL] [Abstract][Full Text] [Related]
6. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Verho R; Londesborough J; Penttilä M; Richard P Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041 [TBL] [Abstract][Full Text] [Related]
7. Metabolic Impact of Redox Cofactor Perturbations on the Formation of Aroma Compounds in Saccharomyces cerevisiae. Bloem A; Sanchez I; Dequin S; Camarasa C Appl Environ Microbiol; 2016 Jan; 82(1):174-83. PubMed ID: 26475113 [TBL] [Abstract][Full Text] [Related]
8. Strategies to Maintain Redox Homeostasis in Yeast Cells with Impaired Fermentation-Dependent NADPH Generation. Kwolek-Mirek M; Maslanka R; Bednarska S; Przywara M; Kwolek K; Zadrag-Tecza R Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273244 [TBL] [Abstract][Full Text] [Related]
9. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Jayakody LN; Horie K; Hayashi N; Kitagaki H Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286 [TBL] [Abstract][Full Text] [Related]
10. Aldehyde Dehydrogenases Function in the Homeostasis of Pyridine Nucleotides in Arabidopsis thaliana. Missihoun TD; Kotchoni SO; Bartels D Sci Rep; 2018 Feb; 8(1):2936. PubMed ID: 29440669 [TBL] [Abstract][Full Text] [Related]
11. Kinetic mechanism of yeast alcohol dehydrogenase with primary aliphatic alcohols and aldehydes. Trivić S; Leskovac V Biochem Mol Biol Int; 1994 Mar; 32(3):399-407. PubMed ID: 8032309 [TBL] [Abstract][Full Text] [Related]
12. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. de Smidt O; du Preez JC; Albertyn J FEMS Yeast Res; 2008 Nov; 8(7):967-78. PubMed ID: 18479436 [TBL] [Abstract][Full Text] [Related]
13. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass. Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244 [TBL] [Abstract][Full Text] [Related]
14. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706 [TBL] [Abstract][Full Text] [Related]
15. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Liu ZL; Moon J Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617 [TBL] [Abstract][Full Text] [Related]
16. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast. Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY J Ind Microbiol Biotechnol; 2011 Aug; 38(8):935-43. PubMed ID: 20824484 [TBL] [Abstract][Full Text] [Related]
17. Cu, Zn superoxide dismutase and NADP(H) homeostasis are required for tolerance of endoplasmic reticulum stress in Saccharomyces cerevisiae. Tan SX; Teo M; Lam YT; Dawes IW; Perrone GG Mol Biol Cell; 2009 Mar; 20(5):1493-508. PubMed ID: 19129474 [TBL] [Abstract][Full Text] [Related]
18. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B J Biotechnol; 2012 Apr; 158(4):192-202. PubMed ID: 21903144 [TBL] [Abstract][Full Text] [Related]
19. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293. Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815 [No Abstract] [Full Text] [Related]
20. An improved method of xylose utilization by recombinant Saccharomyces cerevisiae. Ma TY; Lin TH; Hsu TC; Huang CF; Guo GL; Hwang WS J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1477-86. PubMed ID: 22740288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]