These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36614342)
1. From Mo-Si-B to Mo-Ti-Si-B Alloys: A Short Review. Zhao M; Ye W; Zhu M; Gui Y; Guo W; Wu S; Yan Y Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614342 [TBL] [Abstract][Full Text] [Related]
2. Review of Research Progress on Mo-Si-B Alloys. Yakang K; Wang C; Chen X; Qu Y; Yu J; Ju H; Yilei X Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570197 [TBL] [Abstract][Full Text] [Related]
3. Oxidation Behavior of the Si-B-X (X = Mo, Cr, or Ti) Alloys in the Temperature Range of 1000-1400 °C. Li R; Zeng Y; Xiong X; Lun H; Ye Z; Hu J; Chen S; Yang G; Long J ACS Omega; 2022 May; 7(17):15145-15157. PubMed ID: 35572750 [TBL] [Abstract][Full Text] [Related]
4. The Effect of Boron on the Microstructure and Properties of Refractory Metal Intermetallic Composites (RM(Nb)ICs) Based on Nb-24Ti-xSi (x = 16, 17 or 18 at.%) with Additions of Al, Cr or Mo. Thandorn T; Tsakiropoulos P Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683690 [TBL] [Abstract][Full Text] [Related]
5. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy. Song C; Wang S; Gui Y; Cheng Z; Ni G Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774106 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and Properties of Ti-Zr-Mo Alloys Fabricated by Laser Directed Energy Deposition. Zhang J; Wang C; Shareef N Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770060 [TBL] [Abstract][Full Text] [Related]
7. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys. Xu JL; Tao SC; Bao LZ; Luo JM; Zheng YF Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():156-165. PubMed ID: 30678900 [TBL] [Abstract][Full Text] [Related]
8. Effects of 3d Transition Metal Substitutions on the Phase Stability and Mechanical Properties of Ti-5.5Al-11.8[Mo] Nohira N; Widyanisa K; Chiu WT; Umise A; Tahara M; Hosoda H Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444840 [TBL] [Abstract][Full Text] [Related]
9. On the Stability of Complex Concentrated (CC)/High Entropy (HE) Solid Solutions and the Contamination with Oxygen of Solid Solutions in Refractory Metal Intermetallic Composites (RM(Nb)ICs) and Refractory Complex Concentrated Alloys (RCCAs). Tsakiropoulos P Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499973 [TBL] [Abstract][Full Text] [Related]
10. Influence of Strengthening Elements and Heat Treatment on Microstructure and Fracture Toughness of NiAl-Cr(Mo)-Based Eutectic Alloy. Wang Q; Li R; Xie W; Yang F; Du B; Sheng L Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176243 [TBL] [Abstract][Full Text] [Related]
11. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application. Okulov IV; Pauly S; Kühn U; Gargarella P; Marr T; Freudenberger J; Schultz L; Scharnweber J; Oertel CG; Skrotzki W; Eckert J Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4795-801. PubMed ID: 24094189 [TBL] [Abstract][Full Text] [Related]
12. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of β-type TiNbZrTa alloys fabricated by laser powder bed fusion. Luo X; Yang C; Li RY; Wang H; Lu HZ; Song T; Ma HW; Li DD; Gebert A; Li YY Biomater Adv; 2022 Feb; 133():112625. PubMed ID: 35523650 [TBL] [Abstract][Full Text] [Related]
13. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys. Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657 [TBL] [Abstract][Full Text] [Related]
14. Tribological Properties of Mo-Si-B Alloys Doped with La Li W; Ai T; Dong H; Zhang G Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234574 [TBL] [Abstract][Full Text] [Related]
15. A Study of the Effect of 2 at.% Sn on the Microstructure and Isothermal Oxidation at 800 and 1200 °C of Nb-24Ti-18Si-Based Alloys with Al and/or Cr Additions. Xu Z; Utton C; Tsakiropoulos P Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30257519 [TBL] [Abstract][Full Text] [Related]
16. Design and fabrication of Ti-Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials. Nagase T; Iijima Y; Matsugaki A; Ameyama K; Nakano T Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110322. PubMed ID: 31761171 [TBL] [Abstract][Full Text] [Related]
17. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants. Tavares AM; Ramos WS; de Blas JC; Lopes ES; Caram R; Batista WW; Souza SA J Mech Behav Biomed Mater; 2015 Nov; 51():74-87. PubMed ID: 26218870 [TBL] [Abstract][Full Text] [Related]
18. Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods. Knaislová A; Novák P; Kopeček J; Průša F Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546647 [TBL] [Abstract][Full Text] [Related]
19. Effect of Alloying Elements on the Compressive Mechanical Properties of Biomedical Titanium Alloys: A Systematic Review. Jawed SF; Rabadia CD; Khan MA; Khan SJ ACS Omega; 2022 Aug; 7(34):29526-29542. PubMed ID: 36061649 [TBL] [Abstract][Full Text] [Related]
20. Formation and Thermal Stability of the ω-Phase in Ti-Nb and Ti-Mo Alloys Subjected to HPT. Korneva A; Straumal B; Gornakova A; Kilmametov A; Gondek Ł; Lityńska-Dobrzyńska L; Chulist R; Pomorska M; Zięba P Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]