These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36614482)

  • 1. The Activation Energy of Strain Bursts during Nanoindentation Creep on Polyethylene.
    Ghomsheh MZ; Khatibi G
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-Temperature Creep Behavior and Activation Volume of Dislocation Nucleation in a LiTaO
    Ma Y; Huang X; Song Y; Hang W; Zhang T
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31126139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Nanoindentation to Characterize the Mechanical and Creep Properties of Shale: Load and Loading Strain Rate Effects.
    Wang J; Yang C; Liu Y; Li Y; Xiong Y
    ACS Omega; 2022 Apr; 7(16):14317-14331. PubMed ID: 35573216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Strain Rate Sensitivity and Creep Behavior for the Tripler Plane of Potassium Dihydrogen Phosphate Crystal by Nanoindentation.
    Mao J; Liu W; Li D; Zhang C; Ma Y
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33808140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Room-Temperature Creep Behavior and Its Correlation with Length Scale of a LiTaO
    Hang W; Huang X; Liu M; Ma Y
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of Creep Stress Exponent of TC17 Titanium Alloy by Nanoindentation Method at Room Temperature.
    Li F; Chen X; Wang Y; Zhao G; Yang Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dislocation dynamics modelling of the creep behaviour of particle-strengthened materials.
    Liu FX; Cocks ACF; Tarleton E
    Proc Math Phys Eng Sci; 2021 Jun; 477(2250):20210083. PubMed ID: 35153563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation.
    Hu X; Ni Y; Zhang Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32012856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study.
    Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops.
    Lee S; Vaid A; Im J; Kim B; Prakash A; Guénolé J; Kiener D; Bitzek E; Oh SH
    Nat Commun; 2020 May; 11(1):2367. PubMed ID: 32398690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shift of Creep Mechanism in Nanocrystalline NiAl Alloy.
    Sun Z; Liu B; He C; Xie L; Peng Q
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular models for creep in oriented polyethylene fibers.
    O'Connor TC; Robbins MO
    J Chem Phys; 2020 Oct; 153(14):144904. PubMed ID: 33086814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Evolution and Transitions of Mechanisms in Creep Deformation of Nanocrystalline FeCrAl Alloys.
    Yao H; Ye T; Wang P; Wu J; Zhang J; Chen P
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale.
    Csikor FF; Motz C; Weygand D; Zaiser M; Zapperi S
    Science; 2007 Oct; 318(5848):251-4. PubMed ID: 17932293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.
    Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y
    Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The synergistic effect of grain boundary and grain orientation on micro-mechanical properties of austenitic stainless steel.
    Hu CY; Wan XL; Zhang YJ; Deng XT; Wang ZD; Misra RDK
    J Mech Behav Biomed Mater; 2021 Jun; 118():104473. PubMed ID: 33773237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum.
    Babu PN; Pal S
    J Mol Graph Model; 2023 Jan; 118():108376. PubMed ID: 36413920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Investigation of Compressive Creep Aging Behavior of Al-Cu-Li Alloy Pre-Treated by Compressive Plastic Deformation and Artificial Aging.
    Liu J; Guo F; Matsuda K; Wang T; Zou Y
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twinning-Induced Abnormal Strain Rate Sensitivity and Indentation Creep Behavior in Nanocrystalline Mg Alloy.
    Yu S; Wan Y; Liu C; Chen Z; Zhou X
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient-temperature time-dependent deformation of cast and additive manufactured Al-Cu-Mg-Ag-TiB
    Shakil SI; Zoeram AS; Avateffazeli M; Roscher M; Pirgazi H; Shalchi-Amirkhiz B; Poorganji B; Mohammadi M; Haghshenas M
    Micron; 2022 May; 156():103246. PubMed ID: 35316740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.