BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36614505)

  • 1. Fabrication of Compliant and Transparent Hollow Cerebral Vascular Phantoms for In Vitro Studies Using 3D Printing and Spin-Dip Coating.
    Bisighini B; Di Giovanni P; Scerrati A; Trovalusci F; Vesco S
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Brush-Spin-Coating Method for Fabricating In Vitro Patient-Specific Vascular Models by Coupling 3D-Printing.
    Chi QZ; Mu LZ; He Y; Luan Y; Jing YC
    Cardiovasc Eng Technol; 2021 Apr; 12(2):200-214. PubMed ID: 33263929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Bisighini et al. Fabrication of Compliant and Transparent Hollow Cerebral Vascular Phantoms for In Vitro Studies Using 3D Printing and Spin-Dip Coating.
    Bisighini B; Di Giovanni P; Scerrati A; Trovalusci F; Vesco S
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms.
    Ho WH; Tshimanga IJ; Ngoepe MN; Jermy MC; Geoghegan PH
    Cardiovasc Eng Technol; 2020 Feb; 11(1):14-23. PubMed ID: 31820351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstructing patient-specific cerebral aneurysm vasculature for in vitro investigations and treatment efficacy assessments.
    Chivukula VK; Levitt MR; Clark A; Barbour MC; Sansom K; Johnson L; Kelly CM; Geindreau C; Rolland du Roscoat S; Kim LJ; Aliseda A
    J Clin Neurosci; 2019 Mar; 61():153-159. PubMed ID: 30470652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Soft Transparent Patient-Specific Vascular Models with Stereolithographic 3D printing and Thiol-Based Photopolymerizable Coatings.
    Hosseinzadeh E; Bosques-Palomo B; Carmona-Arriaga F; Fabiani MA; Aguirre-Soto A
    Macromol Rapid Commun; 2024 Mar; 45(6):e2300611. PubMed ID: 38158746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method.
    Kaneko N; Mashiko T; Ohnishi T; Ohta M; Namba K; Watanabe E; Kawai K
    Sci Rep; 2016 Dec; 6():39168. PubMed ID: 27976687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced 3D printed model of middle cerebral artery aneurysms for neurosurgery simulation.
    Nagassa RG; McMenamin PG; Adams JW; Quayle MR; Rosenfeld JV
    3D Print Med; 2019 Aug; 5(1):11. PubMed ID: 31372773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacturing flexible vascular models for cardiovascular surgery planning and endovascular procedure simulations: An approach to segmentation and post-processing with open-source software and end-user 3D printers.
    Kaufmann R; Deutschmann M; Meissnitzer M; Scharinger B; Hergan K; Vötsch A; Dinges C; Hecht S
    Int J Bioprint; 2023; 9(2):669. PubMed ID: 37065673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printing of Intracranial Aneurysms Using Fused Deposition Modeling Offers Highly Accurate Replications.
    Frölich AM; Spallek J; Brehmer L; Buhk JH; Krause D; Fiehler J; Kemmling A
    AJNR Am J Neuroradiol; 2016 Jan; 37(1):120-4. PubMed ID: 26294648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Method of Intracranial Aneurysm Modeling for Stereolithography Apparatus 3D Printer: The "Wall-Carving Technique" Using Digital Imaging and Communications in Medicine Data.
    Haruma J; Sugiu K; Hoshika M; Hiramatsu M; Hishikawa T; Murai S; Nishi K; Yamaoka Y; Sato Y; Ebisudani Y; Edaki H; Kimura R; Date I
    World Neurosurg; 2022 Mar; 159():e113-e119. PubMed ID: 34896354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicone phantoms fabricated with multi-material extrusion 3D printing technology mimicking imaging properties of soft tissues in CT.
    Hatamikia S; Jaksa L; Kronreif G; Birkfellner W; Kettenbach J; Buschmann M; Lorenz A
    Z Med Phys; 2023 Jun; ():. PubMed ID: 37380561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication.
    Clement CE; Jiang D; Thio SK; Park SY
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-printed, patient-specific intracranial aneurysm models: From clinical data to flow experiments with endovascular devices.
    Pravdivtseva MS; Peschke E; Lindner T; Wodarg F; Hensler J; Gabbert D; Voges I; Berg P; Barker AJ; Jansen O; Hövener JB
    Med Phys; 2021 Apr; 48(4):1469-1484. PubMed ID: 33428778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry.
    Chung M; Radacsi N; Robert C; McCarthy ED; Callanan A; Conlisk N; Hoskins PR; Koutsos V
    3D Print Med; 2018; 4(1):2. PubMed ID: 29782613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing.
    Biglino G; Verschueren P; Zegels R; Taylor AM; Schievano S
    J Cardiovasc Magn Reson; 2013 Jan; 15(1):2. PubMed ID: 23324211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accessing 3D Printed Vascular Phantoms for Procedural Simulation.
    Coles-Black J; Bolton D; Chuen J
    Front Surg; 2020; 7():626212. PubMed ID: 33585550
    [No Abstract]   [Full Text] [Related]  

  • 20. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.