These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 36614515)

  • 21. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covalent Organic Framework-based Solid-State Electrolytes, Electrode Materials, and Separators for Lithium-ion Batteries.
    Zhu Y; Bai Q; Ouyang S; Jin Y; Zhang W
    ChemSusChem; 2024 Jan; 17(1):e202301118. PubMed ID: 37706226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances of ZnCo
    Han MC; Zou MC; Yi TF; Wei F
    Chem Asian J; 2023 Jan; 18(1):e202201034. PubMed ID: 36346399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries.
    He Q; Ning J; Chen H; Jiang Z; Wang J; Chen D; Zhao C; Liu Z; Perepichka IF; Meng H; Huang W
    Chem Soc Rev; 2024 Jul; 53(13):7091-7157. PubMed ID: 38845536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbonyl-Based π-Conjugated Materials: From Synthesis to Applications in Lithium-Ion Batteries.
    Oubaha H; Gohy JF; Melinte S
    Chempluschem; 2019 Sep; 84(9):1179-1214. PubMed ID: 31944053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries.
    Dantas R; Ribeiro C; Souto M
    Chem Commun (Camb); 2023 Dec; 60(2):138-149. PubMed ID: 38051115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Next-Generation Rechargeable Batteries.
    Patrike A; Yadav P; Shelke V; Shelke M
    ChemSusChem; 2022 Jul; 15(14):e202200504. PubMed ID: 35560981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple Active Sites: Lithium Storage Mechanism of Cu-TCNQ as an Anode Material for Lithium-Ion Batteries.
    Meng C; Chen T; Fang C; Huang Y; Hu P; Tong Y; Bian T; Zhang J; Wang Z; Yuan A
    Chem Asian J; 2019 Dec; 14(23):4289-4295. PubMed ID: 31612624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-Organic Framework Glass Anode with an Exceptional Cycling-Induced Capacity Enhancement for Lithium-Ion Batteries.
    Gao C; Jiang Z; Qi S; Wang P; Jensen LR; Johansen M; Christensen CK; Zhang Y; Ravnsbaek DB; Yue Y
    Adv Mater; 2022 Mar; 34(10):e2110048. PubMed ID: 34969158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorus-Based Materials for High-Performance Alkaline Metal Ion Batteries: Progress and Prospect.
    Zeng L; Huang L; Zhu J; Li P; Chu PK; Wang J; Yu XF
    Small; 2022 Sep; 18(39):e2201808. PubMed ID: 36026537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries.
    Wang X; Jin S; Liu Z
    Chem Commun (Camb); 2024 May; 60(41):5369-5390. PubMed ID: 38687504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects.
    Wang G; Wang G; Fei L; Zhao L; Zhang H
    Nanomicro Lett; 2024 Mar; 16(1):150. PubMed ID: 38466504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries.
    Amin K; Mao L; Wei Z
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly efficient Co
    Kang Y; Zhang YH; Shi Q; Shi H; Xue D; Shi FN
    J Colloid Interface Sci; 2021 Mar; 585():705-715. PubMed ID: 33121757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advanced Anode Materials for Rechargeable Sodium-Ion Batteries.
    Qiao S; Zhou Q; Ma M; Liu HK; Dou SX; Chong S
    ACS Nano; 2023 Jun; 17(12):11220-11252. PubMed ID: 37289640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two π-Conjugated Covalent Organic Frameworks with Long-Term Cyclability at High Current Density for Lithium Ion Battery.
    Chen H; Zhang Y; Xu C; Cao M; Dou H; Zhang X
    Chemistry; 2019 Dec; 25(68):15472-15476. PubMed ID: 31523858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The application of covalent organic frameworks in Lithium-Sulfur batteries: A mini review for current research progress.
    Wang Z; Pan F; Zhao Q; Lv M; Zhang B
    Front Chem; 2022; 10():1055649. PubMed ID: 36339042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries.
    Zhang L; Zhang X; Han D; Zhai L; Mi L
    Small Methods; 2023 Nov; 7(11):e2300687. PubMed ID: 37568245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.