These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36614551)

  • 1. Investigation into Friction and Wear Characteristics of 316L Stainless-Steel Wire at High Temperature.
    Huang M; Fu Y; Qiao X; Chen P
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tribological Behavior of the 316L Stainless Steel with Heterogeneous Lamella Structure.
    Qin W; Kang J; Li J; Yue W; Liu Y; She D; Mao Q; Li Y
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30261699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Friction coefficients and wear rates of different orthodontic archwires in artificial saliva.
    Alfonso MV; Espinar E; Llamas JM; Rupérez E; Manero JM; Barrera JM; Solano E; Gil FJ
    J Mater Sci Mater Med; 2013 May; 24(5):1327-32. PubMed ID: 23440428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Evaluation of the Tribological Properties of Polymer Materials with Similar Shore Hardness Working in Metal-Polymer Friction Systems.
    Pieniak D; Jedut R; Gil L; Kupicz W; Borucka A; Selech J; Bartnik G; Przystupa K; Krzysiak Z
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. II--Wear patterns.
    Berradja A; Willems G; Celis JP
    Aust Orthod J; 2006 May; 22(1):21-9. PubMed ID: 16792242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Evaluation of Frictional Resistance Between Different Types of Ceramic Brackets and Stainless Steel Brackets With Teflon-Coated Stainless Steel and Stainless Steel Archwires: An In-Vitro Study.
    Bhat KRR; Ahmed N; Joseph R; Younus A A
    Cureus; 2022 Apr; 14(4):e24161. PubMed ID: 35586355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low friction and high strength of 316L stainless steel tubing for biomedical applications.
    Amanov A; Lee SW; Pyun YS
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():176-185. PubMed ID: 27987696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Different Metals on Properties and Friction and Wear of Composite Materials.
    Li W; Chen Y
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The friction and wear patterns of orthodontic brackets and archwires in the dry state.
    Michelberger DJ; Eadie RL; Faulkner MG; Glover KE; Prasad NG; Major PW
    Am J Orthod Dentofacial Orthop; 2000 Dec; 118(6):662-74. PubMed ID: 11113802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sliding Friction and Wear Characteristics of Wire Rope Contact with Sheave under Long-Distance Transmission Conditions.
    Chang X; Peng Y; Zhu Z; Lu H; Tang W; Zhang X
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro friction of stainless steel arch wire-bracket combinations in air and different aqueous solutions.
    Al-Khatib S; Berradja A; Celis JP; Willems G
    Orthod Craniofac Res; 2005 May; 8(2):96-105. PubMed ID: 15888122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Titanium-Implanted Dose on the Tribological Properties of 316L Stainless Steel.
    Wang W; Fu Z; Zhu L; Yue W; Kang J; She D; Ren X; Wang C
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33803508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of wear resistant NFSS-HA novel biocomposites and study of their tribological properties for orthopaedic applications.
    Younesi M; Bahrololoom ME; Fooladfar H
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):178-88. PubMed ID: 20129417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavior of Wear Debris and Its Action Mechanism on the Tribological Properties of Medium-Carbon Steel with Magnetic Field.
    Shi H; Du S; Sun C; Song C; Yang Z; Zhang Y
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Supercritical Bending on the Mechanical & Tribological Properties of Inconel 625 Welded Using the Cold Metal Transfer Method on a 16Mo3 Steel Pipe.
    Krbata M; Ciger R; Kohutiar M; Sozańska M; Eckert M; Barenyi I; Kianicova M; Jus M; Beronská N; Mendala B; Slaný M
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments.
    Dong C; Yuan C; Bai X; Li J; Qin H; Yan X
    Sci Rep; 2017 May; 7(1):2327. PubMed ID: 28539605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Temperature Dry Tribological Behavior of Nb-Microalloyed Bearing Steel 100Cr6.
    Zhu Y; Li J; Zhang C; Wang W; Wang H
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Groove Surface Texture on Tribological Characteristics and Energy Consumption under High Temperature Friction.
    Wu W; Chen G; Fan B; Liu J
    PLoS One; 2016; 11(4):e0152100. PubMed ID: 27035658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Temperature Tribological Performance of Steel/Copper Friction Pairs Lubricated with a Modified C-WS
    Li H; Zhu J; Chen Z; Li Z; Meng B
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Study of Friction and Wear Processes of Model Metallic Biomaterials Including Registration of Friction-Induced Temperature Response of a Tribological Pair.
    Łępicka M; Ciszewski A; Golak K; Grądzka-Dahlke M
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.