These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36615488)

  • 1. H
    Barakat NAM; Irfan OM; Moustafa HM
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing specific capacitance in rice husk-derived activated carbon through phosphoric acid and potassium hydroxide activation order variations.
    Barakat NAM; Mahmoud MS; Moustafa HM
    Sci Rep; 2024 Jan; 14(1):1460. PubMed ID: 38233435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea.
    Yaglikci S; Gokce Y; Yagmur E; Aktas Z
    Environ Technol; 2020 Jan; 41(1):36-48. PubMed ID: 30681935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Activated Carbon Paper Electrodes Prepared by Rice Husk-Isolated Cellulose Fibers for Supercapacitor Applications.
    Kim HG; Kim YS; Kwac LK; Shin HK
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32872500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products.
    Menya E; Olupot PW; Storz H; Lubwama M; Kiros Y
    Waste Manag; 2018 Nov; 81():104-116. PubMed ID: 30527026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of different activating agents on the physical and electrochemical properties of activated carbon electrodes fabricated from wood-dust of
    Shrestha D; Rajbhandari A
    Heliyon; 2021 Sep; 7(9):e07917. PubMed ID: 34522810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon.
    Alvarez J; Lopez G; Amutio M; Bilbao J; Olazar M
    Bioresour Technol; 2014 Oct; 170():132-137. PubMed ID: 25127010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of High-Performance Asymmetric Supercapacitors Using Rice Husk-Activated Carbon and MnFe
    Ahmed F; Kumar S; Shaalan NM; Arshi N; Dalela S; Chae KH
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration and usage of commercial activated carbon from the waste electrodes for the application of supercapacitors.
    Zhang X; Wang Y; Qiao Z; Yu X; Ruan D
    J Environ Manage; 2022 Nov; 322():116083. PubMed ID: 36049310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.
    Ahiduzzaman M; Sadrul Islam AK
    Springerplus; 2016; 5(1):1248. PubMed ID: 27536531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated Carbon Electrodes for Supercapacitors from Purple Corncob (
    Huarote-Garcia E; Cardenas-Riojas AA; Monje IE; López EO; Arias-Pinedo OM; Planes GA; Baena-Moncada AM
    ACS Environ Au; 2024 Mar; 4(2):80-88. PubMed ID: 38525024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors.
    Zhang Q; Han K; Li S; Li M; Li J; Ren K
    Nanoscale; 2018 Feb; 10(5):2427-2437. PubMed ID: 29335695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yerba mate: From waste to activated carbon for supercapacitors.
    Jerez F; Ramos PB; Córdoba VE; Ponce MF; Acosta GG; Bavio MA
    J Environ Manage; 2023 Mar; 330():117158. PubMed ID: 36603253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor.
    Li S; Tan X; Li H; Gao Y; Wang Q; Li G; Guo M
    Sci Rep; 2022 Jun; 12(1):10106. PubMed ID: 35710583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of rice husk wastes in synthesis of graphene oxide-based carbonaceous nanocomposites.
    Liou TH; Wang PY
    Waste Manag; 2020 May; 108():51-61. PubMed ID: 32344300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption.
    Shen Y; Zhang N
    Bioresour Technol; 2019 Jun; 282():294-300. PubMed ID: 30875597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon.
    Hou J; Cao C; Ma X; Idrees F; Xu B; Hao X; Lin W
    Sci Rep; 2014 Dec; 4():7260. PubMed ID: 25434348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation.
    Yue XM; An ZY; Ye M; Liu ZJ; Xiao CC; Huang Y; Han YJ; Zhang SQ; Zhu JS
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31590393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.
    He X; Zhang H; Xie K; Xia Y; Zhao Z; Wang X
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2841-6. PubMed ID: 27455718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors.
    Zuo L; Fan W; Zhang Y; Huang Y; Gao W; Liu T
    Nanoscale; 2017 Mar; 9(13):4445-4455. PubMed ID: 28304051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.