BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36615587)

  • 1. Inhibition of Advanced Glycation End-Products by
    Ouédraogo RJ; Aleem U; Ouattara L; Nadeem-Ul-Haque M; Ouédraogo GA; Jahan H; Shaheen F
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615587
    [No Abstract]   [Full Text] [Related]  

  • 2. 27-Nor-triterpenoid glycosides from Mitragyna inermis.
    Cheng ZH; Yu BY; Yang XW
    Phytochemistry; 2002 Oct; 61(4):379-82. PubMed ID: 12377229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Triterpenoid saponins from bark Mitragyna inermis].
    Cheng ZH; Yu BY; Yang XW; Zhang J
    Zhongguo Zhong Yao Za Zhi; 2002 Apr; 27(4):274-7. PubMed ID: 12774371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quinovic acid triterpenoid saponins from bark of Mitragyna rotundifolia].
    Kang WY; Shi YY; Hao XJ
    Zhongguo Zhong Yao Za Zhi; 2007 Oct; 32(19):2015-8. PubMed ID: 18161294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinovic acid glycosides from Mitragyna stipulosa--first examples of natural inhibitors of snake venom phosphodiesterase I.
    Fatima N; Tapondjou LA; Lontsi D; Sondengam BL; Atta-Ur-Rahman ; Choudhary MI
    Nat Prod Lett; 2002 Dec; 16(6):389-93. PubMed ID: 12462343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationship of triterpenoids isolated from Mitragyna stipulosa on cytotoxicity.
    Tapondjou LA; Lontsi D; Sondengam BL; Choudhary MI; Park HJ; Choi J; Lee KT
    Arch Pharm Res; 2002 Jun; 25(3):270-4. PubMed ID: 12135095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Pregnane Glycosides Isolated from
    Choucry MA; Shalabi AA; El Halawany AM; El-Sakhawy FS; Zaiter A; Morita H; Chaimbault P; Abdel-Sattar E
    ACS Omega; 2021 Jul; 6(29):18881-18889. PubMed ID: 34337228
    [No Abstract]   [Full Text] [Related]  

  • 8. Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation.
    Justino AB; Miranda NC; Franco RR; Martins MM; Silva NMD; Espindola FS
    Biomed Pharmacother; 2018 Apr; 100():83-92. PubMed ID: 29425747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibition of advanced glycation end-products by five fractions and three main flavonoids from Camellia nitidissima Chi flowers.
    Yang R; Wang WX; Chen HJ; He ZC; Jia AQ
    J Food Drug Anal; 2018 Jan; 26(1):252-259. PubMed ID: 29389562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochemical characterization of the leaves of Mitragyna speciosa grown in U.S.A.
    León F; Habib E; Adkins JE; Furr EB; McCurdy CR; Cutler SJ
    Nat Prod Commun; 2009 Jul; 4(7):907-10. PubMed ID: 19731590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aldose reductase inhibition of a saponin-rich fraction and new furostanol saponin derivatives from Balanites aegyptiaca.
    Abdel Motaal A; El-Askary H; Crockett S; Kunert O; Sakr B; Shaker S; Grigore A; Albulescu R; Bauer R
    Phytomedicine; 2015 Aug; 22(9):829-36. PubMed ID: 26220630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro anthelmintic effects of Bridelia ferruginea, Combretum glutinosum, and Mitragyna inermis leaf extracts on Haemonchus contortus, an abomasal nematode of small ruminants.
    Alowanou GG; Olounladé PA; Akouèdegni GC; Faihun AML; Koudandé DO; Hounzangbé-Adoté S
    Parasitol Res; 2019 Apr; 118(4):1215-1223. PubMed ID: 30848351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Glucosidase and advanced glycation end products inhibition with Vernonia amygdalina root and leaf extracts: new data supporting the antidiabetic properties.
    Medjiofack Djeujo F; Cusinato F; Ragazzi E; Froldi G
    J Pharm Pharmacol; 2021 Aug; 73(9):1240-1249. PubMed ID: 33779755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucopyranoside flavonoids isolated from leaves of Spinacia oleracea (spinach) inhibit the formation of advanced glycation end products (AGEs) and aldose reductase activity (RLAR).
    Perez Gutierrez RM; Velazquez EG
    Biomed Pharmacother; 2020 Aug; 128():110299. PubMed ID: 32521451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of methanolic extract of Tamarindus indica Linn. on the growth of clinical isolates of Burkholderia pseudomallei.
    Muthu SE; Nandakumar S; Rao UA
    Indian J Med Res; 2005 Dec; 122(6):525-8. PubMed ID: 16518004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein glycation inhibitory activities of Lawsonia inermis and its active principles.
    Sultana N; Choudhary MI; Khan A
    J Enzyme Inhib Med Chem; 2009 Feb; 24(1):257-61. PubMed ID: 18825553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Tamarindus indica Linn. and Cassia fistula Linn. stem bark extracts on oxidative stress and diabetic conditions.
    Agnihotri A; Singh V
    Acta Pol Pharm; 2013; 70(6):1011-9. PubMed ID: 24383324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitive efficacy of Nymphoides indica rhizome extract on α-glucosidase, and cross-link formation of advanced glycation end product.
    Hanif M; Khan MA; Rafey MR; Zaman A; Aziz I; Amanullah ; Amin A
    J Tradit Chin Med; 2021 Jun; 41(3):376-380. PubMed ID: 34114394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-Ribose-Induced Glycation and Its Attenuation by the Aqueous Extract of
    Balyan P; Ola MS; Alhomida AS; Ali A
    Medicina (Kaunas); 2022 Dec; 58(12):. PubMed ID: 36557018
    [No Abstract]   [Full Text] [Related]  

  • 20. Antidiabetic effects of Syzygium cumini leaves: A non-hemolytic plant with potential against process of oxidation, glycation, inflammation and digestive enzymes catalysis.
    Franco RR; Ribeiro Zabisky LF; Pires de Lima Júnior J; Mota Alves VH; Justino AB; Saraiva AL; Goulart LR; Espindola FS
    J Ethnopharmacol; 2020 Oct; 261():113132. PubMed ID: 32673709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.