These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36615918)

  • 1. Deciphering the Reactive Pathways of Competitive Reactions inside Carbon Nanotubes.
    Marforio TD; Tomasini M; Bottoni A; Zerbetto F; Mattioli EJ; Calvaresi M
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the effects of carbon nanoreactor diameter and internal structure on the pathways of the catalytic hydrosilylation reaction.
    Solomonsz WA; Rance GA; Khlobystov AN
    Small; 2014 May; 10(9):1866-72. PubMed ID: 24914447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free energy of solvation of carbon nanotubes in pyridinium-based ionic liquids.
    Chaban VV; Fileti EE
    Phys Chem Chem Phys; 2016 Jul; 18(30):20357-62. PubMed ID: 27400869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive hydrosilylation in carbon nanoreactors: probing the effect of nanoscale confinement on selectivity.
    Solomonsz WA; Rance GA; Harris BJ; Khlobystov AN
    Nanoscale; 2013 Dec; 5(24):12200-5. PubMed ID: 24131987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of Mean Force Calculations for an S
    Sánchez-Badillo J; Gallo M; Guirado-López RA; González-García R
    J Phys Chem B; 2020 May; 124(21):4338-4357. PubMed ID: 32352290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions.
    Gounder R; Iglesia E
    Chem Commun (Camb); 2013 May; 49(34):3491-509. PubMed ID: 23507832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of water-ethanol solutions with carbon nanotubes and electric fields.
    Winarto ; Takaiwa D; Yamamoto E; Yasuoka K
    Phys Chem Chem Phys; 2016 Dec; 18(48):33310-33319. PubMed ID: 27897278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocatalysis under Nanoconfinement: A Metal-Free Hybrid Coacervate Nanodroplet as a Catalytic Nanoreactor for Efficient Redox and Photocatalytic Reactions.
    Saini B; Singh S; Mukherjee TK
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51117-51131. PubMed ID: 34669368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNT-Confinement Effects on the Menshutkin SN2 Reaction: The Role of Nonbonded Interactions.
    Giacinto P; Zerbetto F; Bottoni A; Calvaresi M
    J Chem Theory Comput; 2016 Aug; 12(8):4082-92. PubMed ID: 27392208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations.
    Kaukonen M; Gulans A; Havu P; Kauppinen E
    J Comput Chem; 2012 Mar; 33(6):652-8. PubMed ID: 22228486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between Elimination and Substitution for Ambident Nucleophiles CN
    Liu X; Guo W; Feng H; Pang B; Wu Y
    J Phys Chem A; 2023 Sep; 127(35):7373-7382. PubMed ID: 37639466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competing E2 and S
    Yang L; Zhang J; Xie J; Ma X; Zhang L; Zhao C; Hase WL
    J Phys Chem A; 2017 Feb; 121(5):1078-1085. PubMed ID: 28094946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical reactions confined within carbon nanotubes.
    Miners SA; Rance GA; Khlobystov AN
    Chem Soc Rev; 2016 Aug; 45(17):4727-46. PubMed ID: 27301444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competing C and N as Reactive Centers for Microsolvated Ambident Nucleophiles CN
    Liu X; Tian S; Guo W; Li H; Pang B; Wu Y
    J Phys Chem A; 2024 Jun; 128(23):4651-4662. PubMed ID: 38819200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water molecules in CNT-Si
    Winarto ; Yamamoto E; Yasuoka K
    J Chem Phys; 2021 Sep; 155(10):104701. PubMed ID: 34525818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Vibration of a Linear Carbon Chain in Carbon Nanotubes.
    Ding D; Zhao Y; Dong S; Yu P; Wang L; Zhao J
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dissociation of nitramide and methylnitramine when confined inside armchair single-walled carbon nanotubes.
    Wang L; Zou H; Yi C; Xu J; Xu W
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3298-305. PubMed ID: 21776700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids.
    Sahu P; Ali SM; Shenoy KT
    J Chem Phys; 2015 Feb; 142(7):074501. PubMed ID: 25702017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors.
    Lebedeva MA; Chamberlain TW; Thomas A; Thomas BE; Stoppiello CT; Volkova E; Suyetin M; Khlobystov AN
    Nanoscale; 2016 Jun; 8(22):11727-37. PubMed ID: 27222094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.