These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36615990)

  • 1. Ultrasensitive Nanophotonic Random Spectrometer with Microfluidic Channels as a Sensor for Biological Applications.
    Kuzin A; Fradkin I; Chernyshev V; Kovalyuk V; An P; Golikov A; Florya I; Gippius N; Gorin D; Goltsman G
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid nanophotonic-microfluidic sensor for highly sensitive liquid and gas analyses.
    Kuzin A; Chernyshev V; Kovalyuk V; An P; Golikov A; Ozhegov R; Gorin D; Gippius N; Goltsman G
    Opt Lett; 2022 May; 47(9):2358-2361. PubMed ID: 35486799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive optofluidic coupled Fabry-Perot capillary sensors.
    Zhao X; Zhou Y; Li Y; Guo J; Liu Z; Luo M; Guo Z; Yang X; Zhang M; Wang Y; Wu X
    Opt Express; 2022 Dec; 30(25):45070-45081. PubMed ID: 36522917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic crystal based interferometric design for label-free all-optical sensing applications.
    Giden IH
    Opt Express; 2022 Jun; 30(12):21679-21686. PubMed ID: 36224881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-area silicon photonic crystal supporting bound states in the continuum and optical sensing formed by nanoimprint lithography.
    Zhao H; Cao X; Dong Q; Song C; Wang L; Gao L
    Nanoscale Adv; 2023 Feb; 5(5):1291-1298. PubMed ID: 36866269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz microfluidic sensing using a parallel-plate waveguide sensor.
    Astley V; Reichel K; Mendis R; Mittleman DM
    J Vis Exp; 2012 Aug; (66):e4304. PubMed ID: 22951593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz ultrasensitive dual-core photonic crystal fiber microfluidic sensor for detecting high-absorption analytes.
    Li S; Zhang H; Fan F; Chang S
    Appl Opt; 2021 Jul; 60(19):5716-5722. PubMed ID: 34263866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing.
    Lin PT; Kwok SW; Lin HY; Singh V; Kimerling LC; Whitesides GM; Agarwal A
    Nano Lett; 2014 Jan; 14(1):231-8. PubMed ID: 24328355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Interrogation Techniques for Nanophotonic Biochemical Sensors.
    Yesilkoy F
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Chip with Fiber-Tip Sensors for Synchronously Monitoring Concentration and Temperature of Glucose Solutions.
    Qu J; Liu Y; Li Y; Li J; Meng S
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of High Sensitivity Photonic Crystal Fiber Sensor Based on Surface Plasmon Resonance of Refractive Indexes of Liquids.
    Yan X; Li B; Cheng T; Li S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-sensitivity nanophotonic sensors with passive trapping of analyte molecules in hot spots.
    Miao X; Yan L; Wu Y; Liu PQ
    Light Sci Appl; 2021 Jan; 10(1):5. PubMed ID: 33402668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Portable Nanophotonic Sensors.
    Shakoor A; Grant J; Grande M; Cumming DRS
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microring resonator based on polarization multiplexing for simultaneous sensing of refractive index and temperature on silicon platform.
    Ou X; Tang B; Zhang P; Li B; Sun F; Liu R; Huang K; Xie L; Li Z; Yang Y
    Opt Express; 2022 Jul; 30(14):25627-25637. PubMed ID: 36237088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect.
    Montesinos-Ballester M; Liu Q; Vakarin V; Ramirez JM; Alonso-Ramos C; Roux XL; Frigerio J; Ballabio A; Talamas E; Vivien L; Isella G; Marris-Morini D
    Sci Rep; 2019 Oct; 9(1):14633. PubMed ID: 31601832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive refractive index sensor based on plastic optical fiber balloon structure.
    Aruna Gandhi MS; Zhao Y; Huang C; Zhang Y; Fu HY; Li Q
    Opt Lett; 2022 Apr; 47(7):1697-1700. PubMed ID: 35363711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels.
    Polynkin P; Polynkin A; Peyghambarian N; Mansuripur M
    Opt Lett; 2005 Jun; 30(11):1273-5. PubMed ID: 15981504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic crystal-based all-optical on-chip sensor.
    Liu Y; Salemink HW
    Opt Express; 2012 Aug; 20(18):19912-20. PubMed ID: 23037043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Chemical Sensing Unit Integration for Parallel Optical Interrogation.
    Hernandez AL; Dortu F; Veenstra T; Ciaurriz P; Casquel R; Cornago I; Horsten HV; Tellechea E; Maigler MV; Fernández F; Holgado M
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.