These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36616012)

  • 1. Aramid Nanofibers/Reduced Graphene Oxide Composite Electrodes with High Mechanical Properties.
    Wang J; Lu S; Ye M; Zhan X; Jia H; Liao X; Melo AFAA
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly flexible and mechanically strong polyaniline nanostructure @ aramid nanofiber films for free-standing supercapacitor electrodes.
    Yin Q; Jia H; Mohamed A; Ji Q; Hong L
    Nanoscale; 2020 Mar; 12(9):5507-5520. PubMed ID: 32091058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust and Flexible Aramid Nanofiber/Graphene Layer-by-Layer Electrodes.
    Kwon SR; Elinski MB; Batteas JD; Lutkenhaus JL
    ACS Appl Mater Interfaces; 2017 May; 9(20):17125-17135. PubMed ID: 28453246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power.
    Kwon SR; Harris J; Zhou T; Loufakis D; Boyd JG; Lutkenhaus JL
    ACS Nano; 2017 Jul; 11(7):6682-6690. PubMed ID: 28682590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the ion storage of MXene by aramid nanofibers towards self-standing electrodes for flexible solid-state supercapacitors.
    Sun Y; Li X; Ren Z
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38865983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement.
    Fan J; Shi Z; Zhang L; Wang J; Yin J
    Nanoscale; 2012 Nov; 4(22):7046-55. PubMed ID: 23047662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-assisted assembly of reduced graphene oxide/MXene-polypyrrole composite film for flexible supercapacitors.
    Wang G; Jiang N; Xu Y; Zhang Z; Wang G; Cheng K
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):817-827. PubMed ID: 36368130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes.
    Shah SA; Kulhanek D; Sun W; Zhao X; Yu S; Parviz D; Lutkenhaus JL; Green MJ
    J Colloid Interface Sci; 2020 Feb; 560():581-588. PubMed ID: 31679786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Biomimetic Nacreous Aramid Nanofiber Composite Films with Ultrahigh Thermal Conductivity by Introducing Graphene Oxide and Edge-Hydroxylated Boron Nitride Nanosheet.
    Xu C; Wei C; Li Q; Li Z; Zhang Z; Ren J
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of flexible binder-free graphene electrodes for high-performance supercapacitors.
    Lin S; Tang J; Zhang W; Zhang K; Chen Y; Gao R; Yin H; Yu X; Qin LC
    RSC Adv; 2022 Apr; 12(20):12590-12599. PubMed ID: 35480379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically strong multifunctional three-dimensional crosslinked aramid nanofiber/reduced holey graphene oxide and aramid nanofiber/reduced holey graphene oxide/polyaniline hydrogels and derived films.
    Zou Y; Chen Z; Peng Z; Yu C; Zhong W
    Nanoscale; 2021 Oct; 13(39):16734-16747. PubMed ID: 34596183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Performance of Self-Supported Flexible Cellulose Nanofibrils/Reduced Graphene Oxide Supercapacitor Electrode Materials.
    He W; Wu B; Lu M; Li Z; Qiang H
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti
    Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved mechanical and ultraviolet shielding performances of hydroxyethyl cellulose film by using aramid nanofibers as additives.
    Huang J; Lu Z; Li J; Ning D; Jin Z; Ma Q; Hua L; E S; Zhang M
    Carbohydr Polym; 2021 Mar; 255():117330. PubMed ID: 33436173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ti
    Zhou Y; Maleski K; Anasori B; Thostenson JO; Pang Y; Feng Y; Zeng K; Parker CB; Zauscher S; Gogotsi Y; Glass JT; Cao C
    ACS Nano; 2020 Mar; 14(3):3576-3586. PubMed ID: 32049485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance.
    Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of High-Value-Added Aramid Nanofibers from Waste Aramid Resources via a Feasible and Cost-Effective Approach.
    Yang B; Li W; Zhang M; Wang L; Ding X
    ACS Nano; 2021 Apr; 15(4):7195-7207. PubMed ID: 33752335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.
    Chen J; Wang Y; Cao J; Liu Y; Zhou Y; Ouyang JH; Jia D
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19831-19842. PubMed ID: 28537372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.
    Aytug T; Rager MS; Higgins W; Brown FG; Veith GM; Rouleau CM; Wang H; Hood ZD; Mahurin SM; Mayes RT; Joshi PC; Kuruganti T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11008-11017. PubMed ID: 29528215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.