These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36616036)

  • 21. Lignin-containing cellulose nanofibers made with microwave-aid green solvent treatment for magnetic fluid stabilization.
    Liu C; Li Z; Li MC; Chen W; Xu W; Hong S; Wu Q; Mei C
    Carbohydr Polym; 2022 Sep; 291():119573. PubMed ID: 35698338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films.
    Wu J; Du X; Yin Z; Xu S; Xu S; Zhang Y
    Carbohydr Polym; 2019 May; 211():49-56. PubMed ID: 30824103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Lignin-Containing Cellulose Nanofibrils Coated Paper-Based Filters for Effective Oil-Water Separation.
    Mittag A; Rahman MM; Hafez I; Tajvidi M
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties.
    Espinosa E; Bascón-Villegas I; Rosal A; Pérez-Rodríguez F; Chinga-Carrasco G; Rodríguez A
    Int J Biol Macromol; 2019 Dec; 141():197-206. PubMed ID: 31479671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced permeability, mechanical and antibacterial properties of cellulose acetate ultrafiltration membranes incorporated with lignocellulose nanofibrils.
    Yang S; Wang T; Tang R; Yan Q; Tian W; Zhang L
    Int J Biol Macromol; 2020 May; 151():159-167. PubMed ID: 32061851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Valorization of Enzymatic Hydrolysis Residues from Corncob into Lignin-Containing Cellulose Nanofibrils and Lignin Nanoparticles.
    Xu R; Du H; Wang H; Zhang M; Wu M; Liu C; Yu G; Zhang X; Si C; Choi SE; Li B
    Front Bioeng Biotechnol; 2021; 9():677963. PubMed ID: 33937224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils.
    H Tayeb A; Tajvidi M; Bousfield D
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32188070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents.
    Li X; Ning C; Li L; Liu W; Ren Q; Hou Q
    Carbohydr Polym; 2021 Nov; 274():118650. PubMed ID: 34702469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupled Effects of Fibril Width, Residual and Mechanically Liberated Lignin on the Flow, Viscoelasticity, and Dewatering of Cellulosic Nanomaterials.
    Imani M; Dimic-Misic K; Tavakoli M; Rojas OJ; Gane PAC
    Biomacromolecules; 2020 Oct; 21(10):4123-4134. PubMed ID: 32790994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Horticultural Plant Residues as New Source for Lignocellulose Nanofibers Isolation: Application on the Recycling Paperboard Process.
    Bascón-Villegas I; Espinosa E; Sánchez R; Tarrés Q; Pérez-Rodríguez F; Rodríguez A
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lignocellulosic nanofibers from triticale straw: The influence of hemicelluloses and lignin in their production and properties.
    Tarrés Q; Ehman NV; Vallejos ME; Area MC; Delgado-Aguilar M; Mutjé P
    Carbohydr Polym; 2017 May; 163():20-27. PubMed ID: 28267498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions.
    Kwon GJ; Han SY; Park CW; Park JS; Lee EA; Kim NH; Alle M; Bandi R; Lee SH
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions.
    Guo S; Li X; Kuang Y; Liao J; Liu K; Li J; Mo L; He S; Zhu W; Song J; Song T; Rojas OJ
    Carbohydr Polym; 2021 Feb; 253():117223. PubMed ID: 33278985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microwave-assisted DES fabrication of lignin-containing cellulose nanofibrils and its derived composite conductive hydrogel.
    Liu W; Jiang C; Li X; Li H; Zhang Y; Huang Y; Chen S; Hou Q
    Carbohydr Polym; 2024 Mar; 328():121741. PubMed ID: 38220351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Eco-friendly laccase and cellulase enzymes pretreatment for optimized production of high content lignin-cellulose nanofibrils.
    Dias MC; Belgacem MN; de Resende JV; Martins MA; Damásio RAP; Tonoli GHD; Ferreira SR
    Int J Biol Macromol; 2022 Jun; 209(Pt A):413-425. PubMed ID: 35413312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents.
    Lu Y; Tao P; Zhang N; Nie S
    Carbohydr Polym; 2020 Oct; 245():116463. PubMed ID: 32718602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of initial chemical composition and characteristics of pulps on the production and properties of lignocellulosic nanofibers.
    Ehman NV; Lourenço AF; McDonagh BH; Vallejos ME; Felissia FE; Ferreira PJT; Chinga-Carrasco G; Area MC
    Int J Biol Macromol; 2020 Jan; 143():453-461. PubMed ID: 31778692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties.
    Park JS; Han SY; Bandi R; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Youe WJ; Gwon J; Park CW; Lee SH
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning structure of spent coffee ground lignin by temperature fractionation to improve lignin-based carbon nanofibers mechanical performance.
    Du B; Zhu H; Wang X; Xiao LP; Ma J; Chen X; Zhou J; Sun RC
    Int J Biol Macromol; 2021 Mar; 174():254-262. PubMed ID: 33529632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.