BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 36616166)

  • 1. Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins.
    Rozov SM; Zagorskaya AA; Konstantinov YM; Deineko EV
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastid transformation as an expression tool for plant-derived biopharmaceuticals.
    Scotti N; Cardi T
    Methods Mol Biol; 2012; 847():451-66. PubMed ID: 22351028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant Protein Production in Microalgae: Emerging Trends.
    Ahmad N; Mehmood MA; Malik S
    Protein Pept Lett; 2020; 27(2):105-110. PubMed ID: 31622194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporary Immersion Bioreactors for the Contained Production of Recombinant Proteins in Transplastomic Plants.
    Barretto S; Michoux F; Nixon PJ
    Methods Mol Biol; 2016; 1385():149-60. PubMed ID: 26614288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgene-induced pleiotropic effects in transplastomic plants.
    Scotti N; Cardi T
    Biotechnol Lett; 2014 Feb; 36(2):229-39. PubMed ID: 24101241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges.
    Meyers B; Zaltsman A; Lacroix B; Kozlovsky SV; Krichevsky A
    Biotechnol Adv; 2010; 28(6):747-56. PubMed ID: 20685387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology.
    Bock R
    Annu Rev Plant Biol; 2015; 66():211-41. PubMed ID: 25494465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plastid Molecular Pharming II. Production of Biopharmaceuticals by Plastid Transformation.
    Bains S; Larsson P; Aronsson H
    Mini Rev Med Chem; 2017; 17(13):1316-1330. PubMed ID: 27719665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches to achieve high-level heterologous protein production in plants.
    Streatfield SJ
    Plant Biotechnol J; 2007 Jan; 5(1):2-15. PubMed ID: 17207252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import.
    Muthamilselvan T; Kim JS; Cheong G; Hwang I
    Plant Cell Rep; 2019 Jul; 38(7):825-833. PubMed ID: 31139894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic plastids in basic research and plant biotechnology.
    Bock R
    J Mol Biol; 2001 Sep; 312(3):425-38. PubMed ID: 11563907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing the Production of Recombinant Proteins in Plants: From Transcription to Protein Stability.
    Feng Z; Li X; Fan B; Zhu C; Chen Z
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advances in chloroplast expression of recombinant proteins in higher plants].
    Lin Y; Cheng X; Yang D; Liang Z; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2018 May; 34(5):631-643. PubMed ID: 29893071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in chloroplast engineering.
    Wang HH; Yin WB; Hu ZM
    J Genet Genomics; 2009 Jul; 36(7):387-98. PubMed ID: 19631913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic engineering of the chloroplast: novel tools and new applications.
    Bock R
    Curr Opin Biotechnol; 2014 Apr; 26():7-13. PubMed ID: 24679252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of foreign proteins using plastid transformation.
    Scotti N; Rigano MM; Cardi T
    Biotechnol Adv; 2012; 30(2):387-97. PubMed ID: 21843626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of leafy biomass using temporary immersion bioreactors: an alternative platform to express proteins in transplastomic plants with drastic phenotypes.
    Michoux F; Ahmad N; Hennig A; Nixon PJ; Warzecha H
    Planta; 2013 Mar; 237(3):903-8. PubMed ID: 23262582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.
    De Marchis F; Bellucci M; Pompa A
    Plant Biotechnol J; 2016 Feb; 14(2):603-14. PubMed ID: 26031839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced editing of the nuclear and plastid genomes in plants.
    Piatek AA; Lenaghan SC; Neal Stewart C
    Plant Sci; 2018 Aug; 273():42-49. PubMed ID: 29907308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Chloroplasts for High-Level Constitutive or Inducible Transgene Expression.
    Bock R
    Methods Mol Biol; 2021; 2317():77-94. PubMed ID: 34028763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.