BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36616246)

  • 1. Meta-QTL Analysis for Yield Components in Common Bean (
    Arriagada O; Arévalo B; Cabeza RA; Carrasco B; Schwember AR
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean.
    Izquierdo P; Kelly JD; Beebe SE; Cichy K
    Plant Genome; 2023 Jun; 16(2):e20328. PubMed ID: 37082832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive meta-QTL analysis for yield-related traits of durum wheat (
    Arriagada O; Gadaleta A; Marcotuli I; Maccaferri M; Campana M; Reveco S; Alfaro C; Matus I; Schwember AR
    Front Plant Sci; 2022; 13():984269. PubMed ID: 36147234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci.
    Gudi S; Saini DK; Singh G; Halladakeri P; Kumar P; Shamshad M; Tanin MJ; Singh S; Sharma A
    Planta; 2022 May; 255(6):115. PubMed ID: 35508739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross.
    Blair MW; Iriarte G; Beebe S
    Theor Appl Genet; 2006 Apr; 112(6):1149-63. PubMed ID: 16432734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat.
    Yang Y; Amo A; Wei D; Chai Y; Zheng J; Qiao P; Cui C; Lu S; Chen L; Hu YG
    Theor Appl Genet; 2021 Sep; 134(9):3083-3109. PubMed ID: 34142166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineating meta-quantitative trait loci for anthracnose resistance in common bean (
    Shafi S; Saini DK; Khan MA; Bawa V; Choudhary N; Dar WA; Pandey AK; Varshney RK; Mir RR
    Front Plant Sci; 2022; 13():966339. PubMed ID: 36092444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype-phenotype association analyses.
    Liu H; Mullan D; Zhang C; Zhao S; Li X; Zhang A; Lu Z; Wang Y; Yan G
    Planta; 2020 Sep; 252(4):65. PubMed ID: 32970252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize.
    Akohoue F; Miedaner T
    Front Plant Sci; 2022; 13():1050891. PubMed ID: 36388551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-Analysis of Quantitative Traits Loci (QTL) Identified in Drought Response in Rice (
    Selamat N; Nadarajah KK
    Plants (Basel); 2021 Apr; 10(4):. PubMed ID: 33917162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel candidate loci for morpho-agronomic and seed quality traits detected by targeted genotyping-by-sequencing in common bean.
    Ugwuanyi S; Udengwu OS; Snowdon RJ; Obermeier C
    Front Plant Sci; 2022; 13():1014282. PubMed ID: 36438107
    [No Abstract]   [Full Text] [Related]  

  • 12. Genome-wide meta-QTL analyses provide novel insight into disease resistance repertoires in common bean.
    Rahmanzadeh A; Khahani B; Taghavi SM; Khojasteh M; Osdaghi E
    BMC Genomics; 2022 Oct; 23(1):680. PubMed ID: 36192697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.).
    Izquierdo P; Astudillo C; Blair MW; Iqbal AM; Raatz B; Cichy KA
    Theor Appl Genet; 2018 Aug; 131(8):1645-1658. PubMed ID: 29752522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QTL consistency and meta-analysis for grain yield components in three generations in maize.
    Li JZ; Zhang ZW; Li YL; Wang QL; Zhou YG
    Theor Appl Genet; 2011 Mar; 122(4):771-82. PubMed ID: 21063866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL analyses for tolerance to abiotic stresses in a common bean (Phaseolus vulgaris L.) population.
    Diaz LM; Ricaurte J; Tovar E; Cajiao C; Terán H; Grajales M; Polanía J; Rao I; Beebe S; Raatz B
    PLoS One; 2018; 13(8):e0202342. PubMed ID: 30157265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A meta-quantitative trait loci analysis identified consensus genomic regions and candidate genes associated with grain yield in rice.
    Aloryi KD; Okpala NE; Amo A; Bello SF; Akaba S; Tian X
    Front Plant Sci; 2022; 13():1035851. PubMed ID: 36466247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative trait loci identification and meta-analysis for rice panicle-related traits.
    Wu Y; Huang M; Tao X; Guo T; Chen Z; Xiao W
    Mol Genet Genomics; 2016 Oct; 291(5):1927-40. PubMed ID: 27380139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Trait Locus Mapping of Marsh Spot Disease Resistance in Cranberry Common Bean (
    Jia B; Conner RL; Penner WC; Zheng C; Cloutier S; Hou A; Xia X; You FM
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35886986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments.
    Semagn K; Beyene Y; Warburton ML; Tarekegne A; Mugo S; Meisel B; Sehabiague P; Prasanna BM
    BMC Genomics; 2013 May; 14():313. PubMed ID: 23663209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GWAS and Meta-QTL Analysis of Yield-Related Ear Traits in Maize.
    Qian F; Jing J; Zhang Z; Chen S; Sang Z; Li W
    Plants (Basel); 2023 Nov; 12(22):. PubMed ID: 38005703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.