These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36616375)

  • 41. Fuel production from waste polystyrene via pyrolysis: Kinetics and products distribution.
    Nisar J; Ali G; Shah A; Iqbal M; Khan RA; Sirajuddin ; Anwar F; Ullah R; Akhter MS
    Waste Manag; 2019 Apr; 88():236-247. PubMed ID: 31079636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production and Analysis of the Physicochemical Properties of the Pyrolytic Oil Obtained from Pyrolysis of Different Thermoplastics and Plastic Mixtures.
    Palmay P; Haro C; Huacho I; Barzallo D; Bruno JC
    Molecules; 2022 May; 27(10):. PubMed ID: 35630764
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pyrolysis of mixed plastic waste: Predicting the product yields.
    Genuino HC; Pilar Ruiz M; Heeres HJ; Kersten SRA
    Waste Manag; 2023 Feb; 156():208-215. PubMed ID: 36493664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study of the Viscosity and Thermal Characteristics of Polyolefins/Solvent Mixtures: Applications for Plastic Pyrolysis.
    Zolghadr A; Foroozandehfar A; Kulas DG; Shonnard D
    ACS Omega; 2021 Dec; 6(48):32832-32840. PubMed ID: 34901633
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Xu Y; Schrader W
    iScience; 2022 Apr; 25(4):104036. PubMed ID: 35372803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging.
    Bonifazi G; Capobianco G; Serranti S
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():115-122. PubMed ID: 29525562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic interaction between scrap tyre and plastics for the production of sulphur-free, light oil from fast co-pyrolysis.
    Dewi WN; Zhou Q; Mollah M; Yang S; Ilankoon IMSK; Chaffee A; Zhang L
    Waste Manag; 2024 Apr; 179():99-109. PubMed ID: 38471253
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil.
    Baena-González J; Santamaria-Echart A; Aguirre JL; González S
    Waste Manag; 2020 Dec; 118():139-149. PubMed ID: 32892091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal pyrolysis of waste versus virgin polyolefin feedstocks: The role of pressure, temperature and waste composition.
    Abbas-Abadi MS; Kusenberg M; Zayoud A; Roosen M; Vermeire F; Madanikashani S; Kuzmanović M; Parvizi B; Kresovic U; De Meester S; Van Geem KM
    Waste Manag; 2023 Jun; 165():108-118. PubMed ID: 37119685
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.
    Auxilio AR; Choo WL; Kohli I; Chakravartula Srivatsa S; Bhattacharya S
    Waste Manag; 2017 Sep; 67():143-154. PubMed ID: 28532621
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel.
    Das P; Tiwari P
    Waste Manag; 2018 Sep; 79():615-624. PubMed ID: 30343794
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production of hydrogen using plastic waste via Aspen Hysys simulation.
    Yi CQ; Bojeng MNBHBH; Kamis SKBH; Mubarak NM; Karri RR; Azri H
    Sci Rep; 2024 Feb; 14(1):4934. PubMed ID: 38418697
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic.
    Harussani MM; Sapuan SM; Rashid U; Khalina A; Ilyas RA
    Sci Total Environ; 2022 Jan; 803():149911. PubMed ID: 34525745
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Waste polypropylene plastic conversion into liquid hydrocarbon fuel for producing electricity and energies.
    Sarker M; Rashid MM; Molla M
    Environ Technol; 2012 Dec; 33(22-24):2709-21. PubMed ID: 23437672
    [TBL] [Abstract][Full Text] [Related]  

  • 55. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste.
    Park C; Choi H; Andrew Lin KY; Kwon EE; Lee J
    Energy (Oxf); 2021 Sep; 230():120876. PubMed ID: 33994654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances in liquid fuel production from plastic waste via pyrolysis: Emphasis on polyolefins and polystyrene.
    Valizadeh S; Valizadeh B; Seo MW; Choi YJ; Lee J; Chen WH; Lin KA; Park YK
    Environ Res; 2024 Apr; 246():118154. PubMed ID: 38218520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of Pyrolysis for the Evaluation of Organic Compounds in Medical Plastic Waste Generated in the City of Cartagena-Colombia Applying TG-GC/MS.
    Hernandez-Fernandez J; Lambis H; Reyes RV
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel.
    Mangesh VL; Padmanabhan S; Tamizhdurai P; Narayanan S; Ramesh A
    J Hazard Mater; 2020 Mar; 386():121453. PubMed ID: 31928791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of the Feedstock on the Process Parameters, Product Composition and Pilot-Scale Cracking of Plastics.
    Frączak D; Fabiś G; Orlińska B
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200093
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probabilistic Material Flow Analysis of Seven Commodity Plastics in Europe.
    Kawecki D; Scheeder PRW; Nowack B
    Environ Sci Technol; 2018 Sep; 52(17):9874-9888. PubMed ID: 30004221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.